未硫化橡胶黏弹塑性本构模型及有限元实现
收稿日期: 2022-01-24
修回日期: 2022-04-07
录用日期: 2022-05-05
网络出版日期: 2022-08-23
基金资助
国家自然科学基金资助项目(11902229);中国科学院战略性先导科技专项(C类)(XDC06030200)
A Visco-Elastoplastic Constitutive Model of Uncured Rubber and Its Finite Element Implementation
Received date: 2022-01-24
Revised date: 2022-04-07
Accepted date: 2022-05-05
Online published: 2022-08-23
为了探究未硫化橡胶的拉伸力学性能,开展了未硫化橡胶不同应变率下的单向拉伸及循环加卸载实验.结果表明,未硫化橡胶具有较为复杂的非线性黏弹塑性力学行为,随着应变率增加,应力水平明显上升,迟滞效应增加,残余应变降低,应力软化增强.为了表征其力学响应,提出了一个三网络(TN)黏弹塑性本构模型,该模型由一个基于八链模型的超弹性网络和两个基于Bergstr?m-Boyce流动模型的非线性黏塑性网络构成,同时考虑了材料的Mullins损伤软化等变形特征,能够较好地表征未硫化橡胶的非线性力学行为.最后,依托于Abaqus有限元软件,完成了本构模型材料子程序的开发,对未硫化橡胶多段松弛加卸载和轮胎胎面胶压入模具过程开展了数值仿真,验证了TN模型的数值有效性以及在复杂变形模式下的数值稳定性.
王银龙, 李钊, 李子然, 汪洋 . 未硫化橡胶黏弹塑性本构模型及有限元实现[J]. 上海交通大学学报, 2023 , 57(8) : 1086 -1095 . DOI: 10.16183/j.cnki.jsjtu.2022.022
In order to investigate the mechanical properties of uncured rubber, uniaxial and cyclic tensile experiments are conducted on uncured rubber at different strain rates. From the experimental results, the rate-dependent nonlinear mechanical behaviors of uncured rubber can be clearly observed. With strain rate increasing, the stress level, hysteresis and Mullins effect get enhanced, and the residual strain decreases. To characterize the nonlinear visco-elastoplastic mechanical behaviors of uncured rubber, a three-network (TN) constitutive model that contains a hyperelastic network and two nonlinear viscoplastic networks is proposed. The eight-chain model is used to characterize the hyperelastic behavior while the Bergstr?m-Boyce flow model is applied in the viscoplastic networks to capture the nonlinear viscous flow. The proposed constitutive model is implanted into the finite element software Abaqus with which, the multistep tensile relaxation test is simulated. The simulation result is satisfactorily consistent with experimental results, which verifies the effectiveness of the TN model. Finally, the simplified molding process of a tire tread is simulated, which further verifies the stability of the TN model.
[1] | MARK J E, ERMAN B, ROLAND C M, et al. The science and technology of rubber[M]. 4th ed. Waltham: Academic Press, 2013: 337-340. |
[2] | 董义军. 农业子午线轮胎成型胎坯质量缺陷原因分析与解决措施[J]. 轮胎工业, 2021, 41(5): 327-330. |
[2] | DONG Yijun. Cause analysis and solutions of green tire quality defects of agricultural radial tire[J]. Tire Industry, 2021, 41(5): 327-330. |
[3] | ANDRZEJ W, MICHAL O, SEWERYN K, et al. Characteristics and investigation of selected manufacturing defects of passenger car tires[J]. Transportation Research Procedia, 2019, 40: 119-126. |
[4] | KALISKE M, ZOPF C, BRüGGEMANN C. Experimental characterization and constitutive modeling of the mechanical properties of uncured rubber[J]. Rubber Chemistry and Technology, 2010, 83(1): 1-15. |
[5] | FENG X J, WEI Y T, LI Z C, et al. Research on nonlinear viscoelastic constitutive model for uncured rubber[J]. Engineering Mechanics, 2016, 33: 212-219. |
[6] | DAL H, ZOPF C, KALISKE M. Micro-sphere based viscoplastic constitutive model for uncured green rubber[J]. International Journal of Solids and Structures, 2018, 132-133: 201-217. |
[7] | ZOPF C, KALISKE M. Numerical characterisation of uncured elastomers by a neural network based approach[J]. Computers & Structures, 2017, 182: 504-525. |
[8] | ZOPF C, HOQUE S E, KALISKE M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98: 287-296. |
[9] | CHEN L, ZHOU W, ZHOU H, et al. Radial tire construction design method based on finite element simulation[J]. Journal of Donghua University, 2017, 34(03): 150-157. |
[10] | 王国林, 周伟, 周海超, 等. 子午线轮胎二次法成型过程仿真[J]. 机械设计与制造, 2017(7): 179-182. |
[10] | WANG Guolin, ZHOU Wei, ZHOU Haichao, et al. Simulation of the radial tire second-stage building process[J]. Machinery Design & Manufacture, 2017(7): 179-182. |
[11] | ZHOU H, WANG G, WANG Y. Wide-base tire-building process and design optimization using finite element analysis[J]. Tire Science and Technology, 2018, 46(4): 242-259. |
[12] | KIM S, BERGER T, KALISKE M. Strain rate-dependent behavior of uncured rubber: Experimental investigation and constitutive modeling[DB/OL]. (2022-01-04)[2022-04-05]. https//doi.org/10.5254/rct.21.78981. |
[13] | LI Z, WANG Y, LI X, et al. Experimental investigation and constitutive modeling of uncured carbon black filled rubber at different strain rates[J]. Polymer Testing, 2019, 75: 117-126. |
[14] | WANG Y, LI Z, LI X, et al. Effect of the temperature and strain rate on the tension response of uncured rubber: Experiments and modeling[J]. Mechanics of Materials, 2020, 148: 103480. |
[15] | GUO L, WANG Y. High-rate tensile behavior of silicone rubber at various temperatures[J]. Rubber Chemistry and Technology, 2020, 93(1): 183-194. |
[16] | 魏明杰, 王银龙, 刘敏, 等. 温度影响下炭黑增强橡胶复合材料的循环拉伸力学行为[J]. 实验力学, 2020, 35(6): 1030-1040. |
[16] | WEI Mingjie, WANG Yinlong, LIU Min, et al. Temperature effect on the mechanical behavior of carbon black reinforced rubber composites under cyclic tensile loadings[J]. Journal of Experimental Mechanics, 2020, 35(6): 1030-1040. |
[17] | GUO Q, ZA?RI F, GUO X. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124. |
[18] | BERGSTR?M J S. Mechanics of solid polymers: Theory and computational modeling[M]. Norwich: William Andrew Publishing, 2015: 141-150. |
[19] | JARRAH H R, ZOLFAGHARIAN A, HEDAYATI R, et al. Nonlinear finite element modelling of thermo-visco-plastic styrene and polyurethane shape memory polymer foams[J]. Actuators, 2021, 10(3): 46. |
[20] | BOYCE M C, WEBER G G, PARKS D M. On the kinematics of finite strain plasticity[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(5): 647-665. |
[21] | CARROLL M M. Molecular chain networks and strain energy functions in rubber elasticity[J]. Philosophical Transactions of the Royal Society A, 2019, 377(2144): 20180067. |
[22] | MELLY S K, LIU L, LIU Y, et al. A review on material models for isotropic hyperelasticity[J]. International Journal of Mechanical System Dynamics, 2021, 1(1): 71-88. |
[23] | XIANG Y, ZHONG D, RUDYKH S, et al. A review of physically based and thermodynamically based constitutive models for soft materials[J]. Journal of Applied Mechanics, 2020, 87(11): 110801. |
[24] | GILLES M, ERWAN V. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chemistry and Technology, 2006, 79(5): 835-858. |
[25] | ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412. |
[26] | MARCKMANN G, VERRON E, GORENT L, et al. A theory of network alteration for the Mullins effect[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 2011-2028. |
[27] | KHAJEHSAEID H. Development of a network alteration theory for the Mullins-softening of filled elastomers based on the morphology of filler-chain interactions[J]. International Journal of Solids and Structures, 2016, 80: 158-167. |
[28] | VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional kinetic analysis of thermally stimulated processes in polymers[J]. Macromolecular Rapid Communications, 2010, 27(18): 1515-1532. |
[29] | ROBERTS A P, GARBOCZI E J. Elastic properties of model random three-dimensional open-cell solids[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(1): 33-55. |
[30] | BERGSTR?M J S. A library of advanced user materials: Version 5.0.0[EB/OL]. (2018-04-17) [2022-04-05]. http//PolyUMod.com/. |
[31] | DREHER M L, NAGARAJA S, BERGSTR?M J S, et al. Development of a flow evolution network model for the stress-strain behavior of poly(L-lactide)[J]. Journal of Biomechanical Engineering, 2017, 139(9): 091002. |
[32] | TOMAS I, CISILINO A P, FRONTINI P M. Accurate, efficient and robust explicit and implicit integration schemes for the Arruda-Boyce viscoplastic model[J]. Mecnica Computacional, 2008, 14: 1003-1042. |
/
〈 |
|
〉 |