机械与动力工程

某航空燃油喷嘴雾化特性分析及结构优化

展开
  • 四川大学 机械工程学院,成都 610065
白青松(1993-),硕士生,主要研究方向为计算流体力学研究与应用.

收稿日期: 2021-07-14

  修回日期: 2021-08-10

  网络出版日期: 2022-08-11

基金资助

四川省科技厅资助项目(2018GZ0117)

Atomization Characteristics Analysis and Structure Optimization of an Aviation Fuel Nozzle

Expand
  • School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Received date: 2021-07-14

  Revised date: 2021-08-10

  Online published: 2022-08-11

摘要

燃油雾化在航空发动机预混燃烧过程中起着至关重要的作用.为提高某航空燃油喷嘴的雾化特性,改进和优化其结构参数,采用流体体积(VOF)界面捕捉算法和正交试验设计相结合的方法, 研究了喷嘴的内部流动及结构参数(扩张角、直线段长度、旋流槽升角、旋流槽个数)对雾化特性的影响规律.结果表明:旋流槽上的局部漩涡影响喷嘴内部燃油流动,通过改变旋流槽入口的结构形式消除局部压力损失;旋流槽个数对索特尔平均直径(SMD)的影响最为显著,扩张角是影响雾化锥角最大的因素,存在一个最优的旋流槽升角使油膜厚度最小,直线段长度对雾化特性的影响相对较小;当扩张角为60°、直线段长度为0.25 mm、旋流槽升角为45°、旋流槽个数为2时,优化效果最佳.优化后的喷嘴油膜厚度减小了43.68%,雾化锥角增加了3.70%,SMD减小了14.79%.

本文引用格式

白青松, 吴阳, 侯力 . 某航空燃油喷嘴雾化特性分析及结构优化[J]. 上海交通大学学报, 2023 , 57(1) : 84 -92 . DOI: 10.16183/j.cnki.jsjtu.2021.256

Abstract

Fuel atomization plays an important role in premixed combustion of aero-engine. In order to improve the atomization characteristics of an aviation fuel nozzle and optimize its structural parameters, the volume of fluid (VOF) interface capture algorithm and orthogonal experimental design were used to study the influence of internal flow and structural parameters (expansion angle, length of straight section, rise angle of swirl groove, and number of swirl groove) on the atomization characteristics. The results show that the local vortex on the swirl groove affects the fuel flow in the nozzle, and the local pressure loss can be eliminated by changing the structure of the swirl groove inlet. The number of swirl grooves has the most significant effect on Sauter mean diameter (SMD), the expansion angle is the biggest factor affecting the atomization cone angle, there is an optimal swirl groove elevation angle to minimize the oil film thickness, and the length of straight section has relatively little effect on the atomization characteristics. When the expansion angle is 60°, the length of straight section is 0.25 mm, the rising angle of swirl groove is 45°, the number of swirl grooves is 2, and the optimization effect is the best. After optimization, the oil film thickness decreases by 43.68%, the atomization cone angle increases by 3.70%, and the SMD decreases by 14.79%.

参考文献

[1] 甘晓华. 航空燃气轮机燃油喷嘴技术[M]. 北京: 国防工业出版社, 2006: 1-20.
[1] GAN Xiaohua. Aero gas turbin engine fuel nozzle technology[M]. Beijing: National Defense Industry Press, 2006: 1-20.
[2] 严红, 陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术, 2020, 41(9): 2038-2058.
[2] YAN Hong, CHEN Fuzhen. Review on fuel atomization in aeroengine[J]. Journal of Propulsion Technology, 2020, 41(9): 2038-2058.
[3] YI Z L, HOU L, ZHANG Q. Geometry optimization of air-assisted swirl nozzle based on surrogate models and computational fluid dynamics[J]. Atomization and Sprays, 2019, 29(7): 605-628.
[4] DAFSSARI R A, LEE H J, HAN J, et al. Viscosity effect on the pressure swirl atomization of an alternative aviation fuel[J]. Fuel, 2019, 240: 179-191.
[5] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Academic Press, 1981, 39(1): 201-225.
[6] SAKMAN A, JHA S, JOG M, et al. A numerical parametric study of simplex fuel nozzle internal flow and performance[J]. Aiaa Journal, 2000, 38(7): 1214-1218.
[7] LUO K, SHAO C X, CHAI M, et al. Level set method for atomization and evaporation simulations[J]. Progress in Energy & Combustion Science, 2019, 73: 65-94.
[8] VISHNU N, UMESH U, WON-SUB H, et al. Numerical study of two-phase flow dynamics and atomization in an open-type liquid swirl injector[J]. International Journal of Multiphase Flow, 2021, 143: 103702.
[9] ASHRAF A. Nonlinear breakup model for a liquid sheet emanating from a pressure-swirl atomizer[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(10): 945-953.
[10] 王振国, 吴晋湘, 鄢小清, 等. 气液同轴离心式喷嘴喷雾流场数值模拟[J]. 推进技术, 1996, 17(3): 43-49.
[10] WANG Zhenguo, WU Jinxiang, YAN Xiaoqing, et al. Numerical simulation of spray flow processes in coaxial swirling injector[J]. Journal of Propulsion Technology, 1996, 17(3): 43-49.
[11] 周立新, 张会强, 雷凡培, 等. 离心式喷嘴内流场特性的数值模拟[J]. 推进技术, 2002, 23(6): 480-484.
[11] ZHOU Lixin, ZHANG Huiqiang, LEI Fanpei, et al. Numerical simulation of internal flow field of swirl nozzle[J]. Journal of Propulsion Technology, 2002, 23(6): 480-484.
[12] 刘娟, 孙明波, 李清廉, 等. 基于VOF方法分析离心式喷嘴结构参数对性能影响[J]. 航空动力学报, 2011, 26(12): 2826-2833.
[12] LIU Juan, SUN Mingbo, LI Qinglian, et al. Analysis of geometric parameters influence on pressure swirl injector performance based on VOF interface tracking method[J]. Journal of Aerospace Power, 2011, 26(12): 2826-2833.
[13] 潘华辰, 周泽磊, 刘雷, 等. 关键结构参数对离心式雾化喷嘴雾化效果的影响研究[J]. 机械工程学报, 2017, 53(2): 199-206.
[13] PAN Huachen, ZHOU Zelei, LIU Lei, et al. Influence of design parameters of the swirl nozzle on its spray characteristics[J]. Journal of Mechanical Engineering, 2017, 53(2): 199-206.
[14] JIN Y Z, ZHOU H, ZHU L H, et al. Dynamics of single droplet splashing on liquid film by coupling FVM with VOF[J]. Processes, 2021, 9(5): 841.
[15] LUBOMIR B, YOHEI S. Direct numerical simulation of evaporation and condensation with the geometric VOF method and a sharp-interface phase-change model[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121233.
[16] 范兴华, 谭大鹏, 李霖, 等. 气-液-固三相流混合建模与求解方法[J]. 物理学报, 2021, 70(12): 261-271.
[16] FAN Xinghua, TAN Dapei, LI Lin, et al. Modeling and solution method of gas-liquid-solid three-phase flow mixing[J]. Acta Physica Sinica, 2021, 70(12): 261-271.
[17] 马朝, 黎明, 索建秦, 等. 某离心式喷嘴雾化特性及优化设计研究[J]. 航空工程进展, 2017, 8(1): 58-67.
[17] MA Zhao, LI Ming, SUO Jianqin, et al. Study on atomization characteristics and optimization design of a centrifugal nozzle[J]. Advances in Aeronautical Science and Engineering, 2017, 8(1): 58-67.
[18] LEFEBRVRE A H, WANG X F. Mean drop sizes from pressure-swirl nozzles[J]. Journal of Propulsion and Power, 1987, 3(1): 11-18.
[19] LEFEBRVRE A H. Fuel effects on gas turbine combustion—Ignition, stability, and combustion efficiency[J]. Journal of Engineering for Gas Turbines and Power—Transactions of the ASME, 1985, 107(1): 24-37.
[20] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005: 20-50.
[20] CHEN Kui. Experimental design and analysis[M]. Beijing: Tsinghua University Press, 2005: 20-50.
文章导航

/