收稿日期: 2022-04-15
网络出版日期: 2022-08-08
基金资助
国家自然科学基金项目(42076210);国家自然科学基金项目(51879160);国家自然科学基金项目(52088102);上海市科委重大研究计划(2019-01-07-00-02-E00066);湖南省自然科学基金项目(2021JJ50027);湖南省教育厅科学研究项目(21A0103);政府间国际科技创新合作重点专项(2018YFE0125100)
Aerodynamic Effect of Deflection Angle of Trailing Edge Flap on Vertical Axis Wind Turbine with Different Airfoils
Received date: 2022-04-15
Online published: 2022-08-08
风能转化率偏低是阻碍垂直轴风力机市场化发展的重要原因.尾缘襟翼的设计能够改变叶片表面的流场结构,从而提高垂直轴风力机的气动性能.目前关于不同翼型垂直轴风力机的气动性能随尾缘襟翼的变化规律尚不明确.基于计算流体动力学方法,采用转捩剪切应力输运湍流模型,对3种不同分离式尾缘襟翼的翼型(NACA0018、NACA0021和NACA0024)叶片的H型垂直轴风力机气动性能进行数值研究.验证算例与已有的实验结果对比,结果吻合较好,证实本方法的可靠性.进一步考虑3种基础翼型与5组襟翼偏转角(-16°、-8°、0°、8°、16°)参数,探究垂直轴风力机的气动性能差异,分析其内在机理.研究结果表明:逆风区正向襟翼偏转角可以有效提高叶片的弯矩系数,顺风区负向襟翼偏转角对叶片的弯矩系数产生有利影响.在负向襟翼偏转角下,风能利用率受偏转影响的程度与翼型厚度呈正相关;在正向襟翼偏转角下,风能利用率受偏转影响的程度与翼型厚度呈负相关.研究成果可以为垂直轴风力机尾缘襟翼的应用提供有效参考.
戴孟祎, 张志豪, 涂佳黄, 韩兆龙, 周岱, 朱宏博 . 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报, 2022 , 56(12) : 1619 -1629 . DOI: 10.16183/j.cnki.jsjtu.2022.110
Low power efficiency is a critical factor that restricts marketization development of the vertical axis wind turbine (VAWT). The proposal of the trailing edge flap can change flow structure on blade surface, so as to improve the aerodynamic performance of VAWT. At present, the variation law of aerodynamic performance of different airfoil VAWT with trailing edge flaps is not clear. Based on the computational fluid dynamics (CFD) method and the shear stress transport (SST) model, a numerical simulation of 3 H-type VAWTs with different airfoils (NACA0018, NACA0021, and NACA0024) with separated trailing edge flap is conducted. It is found that the results of the validation case are in good agreement with experimental results, which verifies the reliability of this method. Afterwards, 3 basic airfoils and 5 groups of flap deflection angle (-16°, -8°, 0°, 8°, and 16°) parameters are selected to explore the difference in the aerodynamic performance of VAWTs. The results indicate that the positive flap deflection angle in the upwind region can effectively improve blade moment coefficient, and the negative flap deflection angle in the downwind region has a beneficial effect. For the negative flap, the degree of wind energy utilization affected by deflection is positively correlated with airfoil thickness, while for the positive flap, the opposite is true. The research results of this paper can provide an effective reference for application of trailing edge flaps of vertical axis wind turbines.
[1] | MITTAL P, MITRA K. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach[J]. Journal of Cleaner Production, 2018, 202: 342-359. |
[2] | HAND B, KELLY G, CASHMAN A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110699. |
[3] | HAND B, CASHMAN A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646. |
[4] | LI Q A, MAEDA T, KAMADA Y, et al. Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164: 1-12. |
[5] | ZHU H T, HAO W X, LI C, et al. Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine[J]. Renewable Energy, 2021, 165: 464-480. |
[6] | WANG H P, ZHANG B, QIU Q G, et al. Flow control on the NREL S809 wind turbine airfoil using vortex generators[J]. Energy, 2017, 118: 1210-1221. |
[7] | DAM C P V. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144. |
[8] | CHEN B, SU S S, VIOLA I M, et al. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean Engineering, 2018, 155: 75-87. |
[9] | LI C, XIAO Y Q, XU Y L, et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212: 1107-1125. |
[10] | 向斌, 缪维跑, 李春, 等. 垂直轴风力机叶片尾缘主动式格尼襟翼气动效率研究分析[J]. 热能动力工程, 2020, 35(4): 242-250. |
[10] | XIANG Bin, MIAO Weipao, LI Chun, et al. Research of aerodynamic efficiency of active gurney flaps on the trailing edge of vertical axis wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 242-250. |
[11] | 缪维跑, 李春, 聂佳斌, 等. 襟翼翼型位置对气动性能的影响研究[J]. 能源研究与信息, 2015, 31(4): 242-246. |
[11] | MIAO Weipao, LI Chun, NIE Jiabin, et al. Influence of the flap airfoils with different positions on the aerodynamic performance[J]. Energy Research and Information, 2015, 31(4): 242-246. |
[12] | 祖红亚, 李春, 李润杰, 等. 襟翼相对长度对翼型气动性能的影响[J]. 动力工程学报, 2015, 35(8): 666-673. |
[12] | ZU Hongya, LI Chun, LI Runjie, et al. Effect of relative flap length on aerodynamic performance of the airfoil[J]. Journal of Chinese Society of Power Engineering, 2015, 35(8): 666-673. |
[13] | RACITI CASTELLI M, ARDIZZON G, BATTISTI L, et al. Modeling strategy and numerical validation for a darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada: ASME, 2010: 409-418. |
[14] | REZAEIHA A, MONTAZERI H, BLOCKEN B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters[J]. Energy Conversion and Management, 2018, 169: 45-77. |
[15] | PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]//Ion paraschivoiu. Canada: Presses inter Polytechnique, 2002. |
[16] | 祖红亚, 李春, 陆云凤, 等. 襟翼翼缝相对宽度对翼型气动性能影响研究[J]. 能源工程, 2015(3): 12-19. |
[16] | ZU Hongya, LI Chun, LU Yunfeng, et al. Study on effect of relative width of flap slot on airfoil aerodynamic performance[J]. Energy Engineering, 2015(3): 12-19. |
[17] | 李润杰, 祖红亚, 李春, 等. 襟翼翼缝相对宽度对翼型动态气动性能的影响[J]. 热能动力工程, 2016, 31(4): 38-44. |
[17] | LI Runjie, ZU Hongya, LI Chun, et al. Effect of the relative width of wing flap slit on the aerodynamic performance of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(4): 38-44. |
[18] | GHASEMIAN M, ASHRAFI Z N, SEDAGHAT A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines[J]. Energy Conversion and Management, 2017, 149: 87-100. |
[19] | MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables: Part I. Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. |
[20] | ARAB A, JAVADI M, ANBARSOOZ M, et al. A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia[J]. Renewable Energy, 2017, 107: 298-311. |
[21] | LAM H F, PENG H Y. Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations[J]. Renewable Energy, 2016, 90: 386-398. |
[22] | ZHANG L X, LIANG Y B, LIU X H, et al. Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD[J]. Advances in Mechanical Engineering, 2013, 5: 905379. |
[23] | REZAEIHA A, KALKMAN I, BLOCKEN B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment[J]. Renewable Energy, 2017, 107: 373-385. |
[24] | SOBHANI E, GHAFFARI M, MAGHREBI M J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241. |
[25] | REZAEIHA A, KALKMAN I, BLOCKEN B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine[J]. Applied Energy, 2017, 197: 132-150. |
[26] | SAGHARICHI A, MAGHREBI M J, ARABGOLARCHEH A. Variable pitch blades: An approach for improving performance of Darrieus wind turbine[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053305. |
[27] | POST M L, CORKE T C. Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135. |
/
〈 |
|
〉 |