非接触式太阳能蒸发的模拟与分析
收稿日期: 2021-07-14
修回日期: 2021-09-02
网络出版日期: 2022-07-28
基金资助
国家自然科学基金(51976123)
Simulation and Analysis of Contactless Solar Evaporation
Received date: 2021-07-14
Revised date: 2021-09-02
Online published: 2022-07-28
零液体排放是高浓度盐水/废水处理的有效途径,其中非接触式太阳能蒸发是一种近年被提出的全新思路,兼具太阳能利用、结构简单、被动运行和不结垢的优势.针对非接触式太阳能蒸发缺乏有效预测模型用以指导实际装置优化的问题,首次构建了非接触式太阳能蒸发的稳态热阻网络模型,并对其蒸发性能进行了分析.结果显示,作为水体能量来源的辐射传热与空气层传热分别占比54.2%和45.8%,均对蒸发性能有重要影响.空气层厚度增加会对两种传热产生不利影响,10 mm 空气层厚度下的蒸发率仅为4 mm空气层厚度下蒸发率的70%.此外,减小蒸汽扩散阻力是提升蒸发率的有效途径,当蒸汽扩散系数从5×10-6 m2/s增大至2.5×10-5 m2/s时,蒸发率提升了2倍.
于杰, 徐震原 . 非接触式太阳能蒸发的模拟与分析[J]. 上海交通大学学报, 2023 , 57(1) : 66 -75 . DOI: 10.16183/j.cnki.jsjtu.2021.255
Zero-liquid discharge is an efficient pathway for high concentration brine and wastewater treatment. Contactless solar evaporation is a new configuration proposed in recent years towards this target, which has the advantages of solar energy utilization, simple structure, passive operation, and anti-fouling. Considering that contactless solar evaporation lacks an effective predictive model to guide the optimization in real scenarios, a steady-state thermal resistance network model is developed for the first time and further analyses are conducted. According to the results, two main heat sources of the water, radiative heat transfer and air gap heat transfer, contribute 54.2% and 45.8% to the total heat flow and both have a significant impact on the evaporation performance. The larger air gap thickness has a negative effect on both of the two heat transfer processes. The evaporation rate with an air gap thickness of 10 mm is only 70% of that with an air gap thickness of 4 mm. Additionally, decreasing vapor diffusion resistance is an efficient way to increase the evaporation rate. The evaporation rate triples when the vapor diffusion coefficient increases from 5×10-6 m2/s to 2.5×10-5 m2/s.
[1] | TONG T Z, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
[2] | YAQUB M, LEE W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review[J]. Science of the Total Environment, 2019, 681: 551-563. |
[3] | ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
[4] | LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728. |
[5] | QASIM M, BADRELZAMAN M, DARWISH N N, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459: 59-104. |
[6] | KIM J, PARK K, YANG D R, et al. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants[J]. Applied Energy, 2019, 254: 113652. |
[7] | PINTO F S, MARQUES R C. Desalination projects economic feasibility: A standardization of cost determinants[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 904-915. |
[8] | GUDE V G. Desalination and sustainability—An appraisal and current perspective[J]. Water Research, 2016, 89: 87-106. |
[9] | ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8): 634-641. |
[10] | 熊日华, 王世昌. 海水淡化中的替代型能源[J]. 化工进展, 2003, 22(11): 1139-1142. |
[10] | XIONG Rihua, WANG Shichang. Alternative energies in seawater desalination[J]. Chemical Industry and Engineering Progress, 2003, 22(11): 1139-1142. |
[11] | TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041. |
[12] | LI C N, GOSWAMI Y, STEFANAKOS E. Solar assisted sea water desalination: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 136-163. |
[13] | SHI Y, ZHANG C L, LI R Y, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830. |
[14] | GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449. |
[15] | LI T T, FANG Q L, XI X F, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593. |
[16] | STORER D P, PHELPS J L, WU X, et al. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15279-15287. |
[17] | WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239. |
[18] | ZHOU L, TAN Y L, JI D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227. |
[19] | ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. |
[20] | SHI Y, LI R Y, JIN Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186. |
[21] | JIA C, LI Y J, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599. |
[22] | LIU H, CHEN C J, CHEN G, et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design[J]. Advanced Energy Materials, 2018, 8(8): 1701616. |
[23] | LI X Q, LI J L, LU J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338. |
[24] | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. |
[25] | XIA Y, HOU Q F, JUBAER H, et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy & Environmental Science, 2019, 12(6): 1840-1847. |
[26] | FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709. |
[27] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
[28] | KUANG Y D, CHEN C J, HE S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): 1900498. |
[29] | ZHU L, SUN L, ZHANG H, et al. A solution to break the salt barrier for high-rate sustainable solar desalination[J]. Energy & Environmental Science, 2021, 14(4): 2451-2459. |
[30] | XU N, LI J L, WANG Y, et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science Advances, 2019, 5(7): eaaw7013. |
[31] | WU L, DONG Z C, CAI Z R, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications, 2020, 11: 521. |
[32] | COOPER T A, ZANDAVI S H, NI G W, et al. Contactless steam generation and superheating under one sun illumination[J]. Nature Communications, 2018, 9: 5086. |
[33] | MENON A K, HAECHLER I, KAUR S, et al. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nature Sustainability, 2020, 3(2): 144-151. |
[34] | HALE G M, QUERRY M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 1973, 12(3): 555-563. |
[35] | ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401. |
[36] | CENGEL Y A, KLEIN S, BECKMAN W. Heat transfer: A practical approach[M]. Boston: WBC McGraw-Hill, 1998. |
/
〈 |
|
〉 |