基于MWSA的热力系统单参数时序预测方法
收稿日期: 2021-08-05
修回日期: 2021-10-06
网络出版日期: 2022-07-15
Sequential Prediction Method of Single Parameter for Thermal System Based on MWSA
Received date: 2021-08-05
Revised date: 2021-10-06
Online published: 2022-07-15
热力系统的状态参数变化可以实时反映系统的运行状态,针对热力系统参数运行数据预测手段匮乏的现状,基于4种算法提出一种单参数预测方法并简称MWSA,对当前设备状态参数进行分解降噪、趋势提取和时序预测,并将预测结果作为下一步运行管理策略和装备维修的参考,对系统的长期安全稳定运行具有重要意义.首先, 利用中值回归经验模态分解(MREMD)方法将监测得到的运行状态参数分解为若干个本征模态函数(IMF)和残余分量.然后,对不符合筛选条件的分量进行小波阈值降噪(WTD),并将去噪后的分量与原本符合筛选条件的分量重组成新的IMF分量.最后,利用基于奇异值分解(SVD)和优化参数排列熵(PE)的K-means聚类算法,对重组后的IMF分量进行分类,取熵值较低的一类分量重构为趋势项并采用整合滑动平均自回归模型(ARIMA)进行预测.经实际案例验证,该方法能够有效克服原始参数时序中高频噪声的干扰,与不采用降噪处理的同类方法相比,该方法预测的准确度更高.
肖鹏飞, 倪何, 金家善 . 基于MWSA的热力系统单参数时序预测方法[J]. 上海交通大学学报, 2023 , 57(1) : 36 -44 . DOI: 10.16183/j.cnki.jsjtu.2021.300
The changes in the status parameters of the thermal system reflect the operating status of the system in real time. The forecast results of the trend extraction and time series prediction of the current equipment status parameters can be used as a reference for the next operation management strategy and equipment maintenance, which can be used for the long-term system safe and stable operation. In this paper, a method which is described as MWSA, based on the midpoint and regression based empirical mode decomposition (MREMD), the wavelet threshold denoising (WTD) and midpoint and techniques, the singular value decomposition (SVD) and optimized parameter permutation entropy (PE), and an auto regressive integrated moving average model (ARIMA), is applied to the single-parameter time series prediction of thermal systems. First, the MREMD is used to decompose the monitored operating state parameters into a number of intrinsic mode functions (IMF) and residual components. Next, the components that do not meet the screening conditions are subjected to wavelet thresholding. The denoised components and the components that originally meet the filtering conditions are recomposed into new IMF components. Finally, the K-means clustering algorithm based on SVD and PE is used to classify the recomposed IMF components, the component with a lower entropy value is selected and reconstructed into a trend item, and ARIMA is used to predict. An actual case verifies that this method can effectively overcome the interference of high-frequency noise in the original parameter timing, and the prediction accuracy is higher than that of similar methods without noise reduction treatment.
[1] | 倪何, 覃海波, 郑奕杨. 考虑给水泄漏的锅炉升负荷仿真及其可靠性[J]. 上海交通大学学报, 2021, 55(4): 444-454. |
[1] | NI He, QIN Haibo, ZHENG Yiyang. Simulation and performance reliability of boiler load raising process considering leakage of feed water[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 444-454. |
[2] | 秦文学, 王嘉兴, 王继强, 等. 基于ARMA模型的燃煤机组主蒸汽压力控制策略[J]. 热力发电, 2020, 49(9): 127-132. |
[2] | QIN Wenxue, WANG Jiaxing, WANG Jiqiang, et al. Control strategy of main steam pressure of coal-fired unit based on ARMA model[J]. Thermal Power Generation, 2020, 49(9): 127-132. |
[3] | 朱少民, 夏虹, 吕新知, 等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程, 2022, 43(2): 246-253. |
[3] | ZHU Shaomin, XIA Hong, LYU Xinzhi, et al. Condition prediction of reactor coolant pump in nuclear power plants based on the combination of ARIMA and LSTM[J]. Nuclear Power Engineering, 2022, 43(2): 246-253. |
[4] | RUIZ-AGUILAR J J, TURIAS I, GONZáLEZ-ENRIQUE J, et al. A permutation entropy-based EMD-ANN forecasting ensemble approach for wind speed prediction[J]. Neural Computing and Applications, 2021, 33(7): 2369-2391. |
[5] | 陈亮, 刘宏立, 郑倩, 等. 基于EEMD-SVD-PE的轨道波磨趋势项提取[J]. 哈尔滨工业大学学报, 2019, 51(5): 171-177. |
[5] | CHEN Liang, LIU Hongli, ZHENG Qian, et al. An EEMD-SVD-PE approach to extract the trend of track irregularity[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 171-177. |
[6] | YANG Z J, LING B W K, BINGHAM C. Joint empirical mode decomposition and sparse binary programming for underlying trend extraction[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(10): 2673-2682. |
[7] | 梁兵, 汪同庆. 基于HHT的振动信号趋势项提取方法[J]. 电子测量技术, 2013, 36(2): 119-122. |
[7] | LIANG Bing, WANG Tongqing. Method of vibration signal trend extraction based on HHT[J]. Electronic Measurement Technology, 2013, 36(2): 119-122. |
[8] | 刘海江, 刘世高, 李敏. 换挡加速度信号的EMD和小波阈值降噪方法[J]. 噪声与振动控制, 2018, 38(2): 198-203. |
[8] | LIU Haijiang, LIU Shigao, LI Min. EMD and wavelet threshold denoising method of gear-shift acceleration signals[J]. Noise and Vibration Control, 2018, 38(2): 198-203. |
[9] | 黄礼敏. 海浪中非平稳非线性舰船运动在线预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
[9] | HUANG Limin. On-line prediction of non-stationary and nonlinear ship motions at sea[D]. Harbin: Harbin Engineering University, 2016. |
[10] | BEHERA A P, GAURISARIA M K, RAUTARAY S S, et al. Predicting future call volume using ARIMA models[C]//2021 5th International Conference on Intelligent Computing and Control Systems. Madurai, India: IEEE, 2021: 1351-1354. |
[11] | 仇琦, 杨兰, 丁旭, 等. 基于改进EMD-ARIMA的光伏发电系统短期功率预测[J]. 电力科学与工程, 2020, 36(8): 42-50. |
[11] | QIU Qi, YANG Lan, DING Xu, et al. An improved short-term power prediction method of PV power generation system based on EMD-ARIMA model[J]. Electric Power Science and Engineering, 2020, 36(8): 42-50. |
[12] | 尤保健. 基于六西格玛理论的轴流泵叶轮水力效率影响因子分析[J]. 水电能源科学, 2020, 38(2): 168-171. |
[12] | YOU Baojian. Influencing factors analysis of hydraulic efficiency of axial flow pump impeller based on six sigma theory[J]. Water Resources and Power, 2020, 38(2): 168-171. |
[13] | 王彬蓉, 王维博, 周超, 等. 基于EMD自适应重构的心音信号特征筛选及分类[J]. 航天医学与医学工程, 2020, 33(6): 533-541. |
[13] | WANG Binrong, WANG Weibo, ZHOU Chao, et al. Feature selection and classification of heart sound based on EMD adaptive reconstruction[J]. Space Medicine & Medical Engineering, 2020, 33(6): 533-541. |
[14] | 崔公哲, 张朝霞, 杨玲珍, 等. 一种改进的小波阈值去噪算法[J]. 现代电子技术, 2019, 42(19): 50-53. |
[14] | CUI Gongzhe, ZHANG Zhaoxia, YANG Lingzhen, et al. An improved wavelet threshold denoising algorithm[J]. Modern Electronics Technique, 2019, 42(19): 50-53. |
[15] | CHANG F X, HONG W X, ZHANG T, et al. Research on wavelet denoising for pulse signal based on improved wavelet thresholding[C]//2010 First International Conference on Pervasive Computing, Signal Processing and Applications. New York, USA: IEEE, 2010: 564-567. |
[16] | 徐晨, 赵瑞珍, 甘小冰. 小波分析应用算法[M]. 北京: 科学出版社, 2016. |
[16] | XU Chen, ZHAO Ruizhen, GAN Xiaobing. Application algorithm of wavelet analysis[M]. Beijing: Science Press, 2016. |
[17] | 谢忠玉, 张立. 相空间重构参数选择方法的研究[J]. 中国科技信息, 2009(16): 42-43. |
[17] | XIE Zhongyu, ZHANG Li. Selection of embedding parameters in phase space reconstruction[J]. China Science and Technology Information, 2009(16): 42-43. |
[18] | 杨恒岳, 刘青荣, 阮应君. 基于k-means聚类算法的分布式能源系统典型日冷热负荷选取[J]. 热力发电, 2021, 50(3): 84-90. |
[18] | YANG Hengyue, LIU Qingrong, RUAN Yingjun. Selection of typical daily cooling and heating load of CCHP system based on k-means clustering algorithm[J]. Thermal Power Generation, 2021, 50(3): 84-90. |
[19] | 田行宇, 李传金. PP检验对异方差时间序列的伪检验[J]. 统计与决策, 2018, 34(17): 74-76. |
[19] | TIAN Xingyu, LI Chuanjin. Spurious tests to he-teroscedastic time series with PP test[J]. Statistics & Decision, 2018, 34(17): 74-76. |
[20] | 李国春, 王恩龙, 王丽梅, 等. 基于AIC准则判断锂电池最优模型[J]. 汽车工程学报, 2019, 9(5): 352-358. |
[20] | LI Guochun, WANG Enlong, WANG Limei, et al. Evaluating optimal models of lithium battery based on AIC[J]. Chinese Journal of Automotive Engineering, 2019, 9(5): 352-358. |
[21] | 李颖若, 韩婷婷, 汪君霞, 等. ARIMA时间序列分析模型在臭氧浓度中长期预报中的应用[J]. 环境科学, 2021, 42(7): 3118-3126. |
[21] | LI Yingruo, HAN Tingting, WANG Junxia, et al. Application of ARIMA model for mid-and long-term forecasting of ozone concentration[J]. Environmental Science, 2021, 42(7): 3118-3126. |
[22] | 饶国强, 冯辅周, 司爱威, 等. 排列熵算法参数的优化确定方法研究[J]. 振动与冲击, 2014, 33(1): 188-193. |
[22] | RAO Guoqiang, FENG Fuzhou, SI Aiwei, et al. Method for optimal determination of parameters in permutation entropy algorithm[J]. Journal of Vibration and Shock, 2014, 33(1): 188-193. |
[23] | 郑奕扬, 倪何, 金家善. 基于MSOP的蒸汽动力系统单参数运行稳定性评估方法[J]. 上海交通大学学报, 2021, 55(11): 1438-1444. |
[23] | ZHENG Yiyang, NI He, JIN Jiashan. An operation stability assessment method of a single-parameter in steam power system based on MSOP[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1438-1444. |
/
〈 |
|
〉 |