收稿日期: 2021-03-03
网络出版日期: 2022-07-12
基金资助
国家自然科学基金(U20B2011)
Uncertainty Quantitative Analysis of Subchannel Code Calculation of PSBT Void Distribution Benchmark
Received date: 2021-03-03
Online published: 2022-07-12
为了评估子通道程序的准确性与可靠性,需要定量给出计算结果的不确定性.采用统计学上基于输入参数不确定性传递的方法进行不确定性分析,可以定量得到程序计算结果的不确定范围.在假设模型参数不确定性服从正态分布的基础上,采用统计学方法确定模型参数不确定性的分布以取代传统的专家判断.通过对压水堆子通道和棒束实验(PSBT)基准题空泡分布实验进行计算,分析子通道程序COBRA-IV 对实验结果的预测能力,同时得到满足容忍限的计算结果不确定性上下限.计算结果表明:评估得到的不确定带能较好地包络实验值;同时利用统计均值对模型进行标定后,可以得到比原模型更接近实验值的计算结果.
张俊涛, 刘晓晶, 张滕飞, 柴翔 . 子通道程序对PSBT空泡分布实验计算的不确定性量化分析[J]. 上海交通大学学报, 2022 , 56(10) : 1420 -1426 . DOI: 10.16183/j.cnki.jsjtu.2021.068
In order to evaluate the accuracy and reliability of the subchannel code, it is necessary to quantitatively give the uncertainty of the calculation results. The uncertainty analysis is conducted by using the statistical method based on propagation of input uncertainties, and the uncertainty range of the subchannel code calculation results can be obtained quantitatively. Based on the assumption that the uncertainty of model parameters obeys normal distribution, the statistical method is used to determine the distribution of the uncertainty of model parameters to replace the traditional expert judgment. Through the calculation of the pressurized water reactor sub-channel and bundle tests (PSBT) benchmark, the ability of the subchannel code COBRA-IV to predict the experimental results is analyzed, and the uncertainty interval satisfying the tolerance limit of the calculation results is obtained. The results demonstrate that the experiment data is well enveloped by the obtained uncertainty bands and the model calibrated by the statistical mean value presents a good improvement of calculations.
Key words: uncertainty quantification; subchannel code; void fraction
[1] | USNRC. Best-estimate calculations of emergency core cooling system performance: RG 1.157[R]. Washington, USA: Office of Nuclear Regulatory Research, 1989. |
[2] | BOYACK B E, CATTON UCLA I, DUFFEY INEL R B, et al. Quantifying reactor safety margins part 1: An overview of the code scaling, applicability, and uncertainty evaluation methodology[J]. Nuclear Engineering and Design, 1990, 119(1): 1-15. |
[3] | GLAESER H, HOFER E, KLOOS M, et al. Uncertainty and sensitivity analysis of a post-experiment calculation in thermal hydraulics[J]. Reliability Engineering & System Safety, 1994, 45(1/2): 19-33. |
[4] | D’AURIA F, DEBRECIN N, GALASSI G M. Outline of the uncertainty methodology based on accuracy extrapolation[J]. Nuclear Technology, 1995, 109(1): 21-38. |
[5] | POURGOL-MOHAMMAD M. Thermal-hydraulics system codes uncertainty assessment: A review of the methodologies[J]. Annals of Nuclear Energy, 2009, 36(11/12): 1774-1786. |
[6] | D’AURIA F, GLAESER H, LEE S, et al. Best estimate safety analysis for nuclear power plants: Uncertainty evaluation[R]. Vienna, Austria: IAEA, 2008. |
[7] | GLAESER H, BAZIN P, BACCOU J, et al. Bemuse phase Ⅵ report: Status report on the area, classification of the methods, conclusions and recommendations[R]. Paris, France: OECD Nuclear Energy Agency, 2011. |
[8] | SKOREK T, DE CRÉCY A, KOVTONYUK A, et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes-PREMIUM benchmark[J]. Nuclear Engineering and Design, 2019, 354: 110199. |
[9] | CELEUX G, GRIMAUD A, LEFÈBVRE Y, et al. Identifying intrinsic variability in multivariate systems through linearized inverse methods[J]. Inverse Problems in Science and Engineering, 2010, 18(3): 401-415. |
[10] | HEO J, TURINSKY P J, DOSTER J M. Optimization of thermal-hydraulic reactor system for SMRs via data assimilation and uncertainty quantification[J]. Nuclear Science and Engineering, 2013, 173(3): 293-311. |
[11] | 李冬. 最佳估算模型的不确定性量化方法研究及再淹没模型评估的应用[D]. 上海: 上海交通大学, 2017. |
[11] | LI Dong. Investigation of uncertainty quantification method on BE models and application of reflood model evaluation[D]. Shanghai: Shanghai Jiao Tong University, 2017. |
[12] | XIONG Q W, GOU J L, CHEN W, et al. Investigation of uncertainty quantification methods for constitutive models and the application to LOFT LBLOCA[J]. Annals of Nuclear Energy, 2019, 132: 119-133. |
[13] | LIU C H, RUBIN D B. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence[J]. Biometrika, 1994, 81(4): 633-648. |
[14] | WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96. |
[15] | FREPOLI C. An overview of Westinghouse realistic large break LOCA evaluation model[J]. Science and Technology of Nuclear Installations, 2008, 2008: 498737. |
[16] | RUBIN A, SCHOEDEL A, AVRAMOVA M, et al. OECD/NRC benchmark based on NUPEC PWR sub-channel and bundle tests (PSBT). Volume I: Experimental database and final problem specifications[R]. Paris, France: OECD Nuclear Energy Agency, 2012. |
[17] | PANKA I, KERESZTÚRI A. Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data[J]. Kerntechnik, 2014, 79(4): 359-366. |
[18] | ZIVIS S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production[J]. Journal of Heat Transfer, 1964, 86(2): 247-251. |
[19] | 徐济鋆. 沸腾传热和气液两相流[M]. 第2版. 北京: 原子能出版社, 2001. |
[19] | XU Jijun. Boiling heat transfer and gas-liquid two-phase flow[M]. 2nd ed. Beijing: Atomic Energy Press, 2001. |
[20] | CASTELLANA F S, ADAMS W T, CASTERLINE J E. Single-phase subchannel mixing in a simulated nuclear fuel assembly[J]. Nuclear Engineering and Design, 1974, 26(2): 242-249. |
/
〈 |
|
〉 |