收稿日期: 2022-05-16
网络出版日期: 2022-07-11
基金资助
国家自然科学基金(61873346);扬州大学“青蓝工程”资助项目
In-Flight Alignment Method of Integrated SINS/GPS Navigation System Based on Combined PF-UKF Filter
Received date: 2022-05-16
Online published: 2022-07-11
针对捷联式惯性导航系统(SINS)/全球定位系统(GPS)组合导航系统模型的误差以及粒子滤波(PF)存在的粒子退化问题,结合无迹卡尔曼滤波(UKF)算法,提出一种基于PF-UKF组合滤波的SINS/GPS组合导航系统空中对准方法.由误差四元数代替姿态角,以SINS和GPS的位置差和速度差作为观测量,建立新的组合导航系统误差方程.所提出的PF-UKF组合滤波算法将采样粒子分为随机粒子和确定粒子,其中随机粒子为概率密度函数所采集,确定粒子为UKF中采集Sigma点后所求取的系统状态值.由此降低了PF处理粒子时的复杂程度以及粒子退化的程度.仿真结果表明:相比于UKF算法,该方法有效提高了组合导航系统的精度,具有较好的鲁棒性.
高红莲, 尤杰, 曹松银 . 基于PF-UKF组合滤波的SINS/GPS组合导航系统空中对准方法[J]. 上海交通大学学报, 2022 , 56(11) : 1447 -1452 . DOI: 10.16183/j.cnki.jsjtu.2022.167
Aimed at the modeling error of the integrated strapdown inertial navigation system(SINS)/global positioning system (GPS) navigation system and the particle degradation problem of particle filter(PF), an in-flight alignment method of integrated SINS/GPS navigation system based on the combined PF-UKF filter is proposed, in combiation with the unscented Kalman filter(UKF). First, the attitude angle is replaced by the error quaternion. The position and velocity differences between SINS and GPS are selected as the observation variables. In addition, a novel error equation of the integrated navigation system is established. Moreover, the sampled particles are divided into random particles and deterministic particles in the proposed combined PF-UKF filter. The random particles are collected by probability density function, and the determined particles are the state values obtained by collecting sigma point of UKF algorithm. Therefore, the proposed method can effectively reduce the complexity of PF and the degree of particle degradation. The simulation results show that compared with the UKF algorithm, the proposed method can effectively improve the error accuracy of integrated navigation system with a better robustness.
[1] | 付廷强, 马太原, 王亚飞, 等. GPS/INS延时估计与基于残差重构的延时补偿算法[J]. 上海交通大学学报, 2019, 53(10): 1210-1217. |
[1] | FU Tingqiang, MA Taiyuan, WANG Yafei, et al. GPS/INS delay estimation and delay compensation based on residual reconstruction[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1210-1217. |
[2] | ZHA F, CHANG L, HE H. Comprehensive error compensation for dual-axis rotational inertial navigation system[J]. IEEE Sensors Journal, 2020, 20(7): 3788-3802. |
[3] | 薛海建, 郭晓松, 张东方, 等. 基于四元数的捷联惯导惯性系晃动基座自对准算法[J]. 上海交通大学学报, 2016, 50(3): 419-424. |
[3] | XUE Haijian, GUO Xiaosong, ZHANG Dongfang, et al. SINS self-alignment algorithm with inertial frame for swaying base based on quaternion[J]. Journal of Shanghai Jiao Tong University, 2016, 50(3): 419-424. |
[4] | ZHAO X, LI J, YAN X, et al. Robust adaptive cubature Kalman filter and its application to ultra-tightly coupled SINS/GPS navigation System[J]. Sensors, 2018, 18(7): 2352. |
[5] | 郭慧娟, 刘慧英, 石静, 等. 基于自适应分类容错滤波的SINS/GNSS组合导航方法[J]. 中国惯性技术学报, 2018, 26(1): 39-44. |
[5] | GUO Huijuan, LIU Huiying, SHI Jing, et al. SINS/GNSS integrated navigation method based on adaptive classification fault-tolerant filtering[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 39-44. |
[6] | WANG M S, WU W Q, ZHUO P Y, et al. State transformation extended Kalman filter for GPS/SINS tightly coupled integration[J]. GPS Solutions, 2018, 22(4): 1-12, 2018. |
[7] | 薛海建, 王解, 郭晓松, 等. SINS非线性自对准中的强跟踪UKF算法设计[J]. 上海交通大学学报, 2015, 49(9): 1429-1434. |
[7] | XUE Haijian, WANG Jie, GUO Xiaosong, et al. Design of a strong tracing UKF for nonlinear self-alignment of SINS[J]. Journal of Shanghai Jiao Tong University, 2015, 49(9): 1429-1434. |
[8] | CAO S Y, GUO L. Multi-objective robust initial alignment algorithm for inertial navigation system with multiple disturbances[J]. Aerospace Science and Technology, 2012, 21(1): 1-6. |
[9] | HUI Z, ZHI X, SHI L, et al. A robust filtering algorithm for integrated navigation system of aerospace vehicle in launch inertial coordinate[J]. Aerospace Science and Technology, 2016, 58: 629-640. |
[10] | FENG K, LI J, ZHANG D, et al. Robust cubature Kalman filter for SINS/GPS integrated navigation systems with unknown noise statistics[J]. IEEE Access, 2021, 9: 9101-9116. |
[11] | GUO L, CAO S Y, QI C, et al. Initial alignment for nonlinear inertial navigation systems with multiple disturbances based on enhanced anti-disturbance filtering[J]. International Journal of Control, 2012, 85(5): 491-501. |
[12] | HU G G, BAO B B, ZHONG Y M, et al. Unscented Kalman filter with process noise covariance estimation for vehicular INS/GPS integration system[J]. Information Fusion, 2020, 64: 194-204. |
[13] | 黄卫华, 何佳乐, 陈阳, 等. 基于灰色模型和改进粒子滤波的无人机视觉/INS导航算法[J]. 中国惯性技术学报, 2021, 29(4): 459-466. |
[13] | HUANG Weihua, HE Jiale, CHEN Yang, et al. UAV vision/INS navigation algorithm based on grey model and improved particle filter[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 459-466. |
[14] | HU G, ZHONG S, ZHONG Y M. A derivative UKF for tightly coupled INS/GPS integrated navigation[J]. ISA Transactions, 2015, 56: 135-144. |
/
〈 |
|
〉 |