电子信息与电气工程

一种三维相变存储器1S1R存储单元电路仿真模型

展开
  • 1.中国科学技术大学 微电子学院,合肥 230026
    2.上海市纳米科技与产业发展促进中心, 上海 200237
    3.中国科学院 上海微系统与信息技术研究所,上海 200050
张光明(1996-),男,河南省漯河市人,硕士生,现主要从事相变存储器芯片设计研究.

收稿日期: 2021-12-21

  网络出版日期: 2022-06-22

基金资助

国家自然科学基金项目(61904186);上海市青年科技英才扬帆计划项目(19YF1456100);中国博士后科学基金项目(2019M660094);中国博士后科学基金项目(2021T140465)

A Circuit Simulation Model of 1S1R for 3D Phase-Change Memory

Expand
  • 1. School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
    2. Shanghai Nanotechnology Promotion Center, Shanghai 200237, China
    3. Shanghai Institute of Microsystem and Information Technology of Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2021-12-21

  Online published: 2022-06-22

摘要

三维相变存储芯片1S1R存储单元由双向阈值选通管(OTS)和相变存储器件(PCM)串联组成.为了解决现有OTS和PCM电路仿真模型不能准确模拟器件电学特性和物理特性、不适用于限制型PCM等问题,提出了一种采用Verilog-A语言实现的1S1R电路仿真模型.该模型实现了对OTS电学特性和PCM相变过程中电流、温度、熔融比例、晶态比例和非晶比例变化的模拟,具有良好的收敛性和较快的仿真速度,仿真结果与器件实际测试结果吻合.与传统模型相比,该模型针对限制型PCM特点,实现了对PCM熔融过程、晶态非线性、熔融电阻率稳定和OTS亚阈值非线性、双向选通特性的模拟和集成.分析了OTS亚阈值非线性参数和读电压窗口的关系,发现当OTS阈值电流约等于PCM阈值电流时读窗口最大;展示了1S1R单元直流和阵列瞬态仿真结果,为三维相变存储器的电路设计和仿真提供了基础.

本文引用格式

张光明, 雷宇, 陈后鹏, 俞秋瑶, 宋志棠 . 一种三维相变存储器1S1R存储单元电路仿真模型[J]. 上海交通大学学报, 2022 , 56(12) : 1649 -1657 . DOI: 10.16183/j.cnki.jsjtu.2021.522

Abstract

The 1S1R storage unit of 3D phase-change memory is composed of ovonic threshold switch selector (OTS) in series with the phase change memory (PCM) device. In order to solve the problems of the current OTS and PCM circuit simulation models, such as not able to accurately simulate the electrical and physical characteristics of devices, and not suitable for confined PCM, a 1S1R spice model based on Verilog-A is proposed. The model simulates the electrical characteristics of OTS and the changes of current, temperature, melting proportion, crystallization proportion and amorphous proportion in the crystallization, melting and quenching of the PCM. The model has a good convergence and fast simulation speed. The simulation results are consistent with the actual test results of the device. Compared with the traditional model, the simulation and integration of confined PCM melting process, crystal nonlinearity, melting resistivity stability and subthreshold nonlinearity, and bidirectional switching characteristics of OTS are realized. The relationship between OTS subthreshold nonlinear parameter and read voltage window is analyzed. It is found that the read window reaches its maximum when OTS threshold current is approximately equal to PCM threshold current. The results of DC simulation of 1S1R cell and transient simulation of array are displayed, providing the basis for circuit design and simulation of 3D phase-change memory.

参考文献

[1] RAO F, DING K Y, ZHOU Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science, 2017, 358(6369): 1423-1427.
[2] 李晓云, 陈后鹏, 雷宇, 等. 一种基于相变存储器的高速读出电路设计[J]. 上海交通大学学报, 2019, 53(8): 936-942.
[2] LI Xiaoyun, CHEN Houpeng, LEI Yu, et al. A high-speed read circuit for phase-change random-access memory[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8): 936-942.
[3] SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]//IEEE International Electron Devices Meeting. San Francisco, California, USA: IEEE, 2018: 27.5. 1-27.5.4.
[4] 吴磊, 蔡道林, 陈一峰, 等. 连续性RESET/SET对相变存储器疲劳特性的影响[J]. 上海交通大学学报, 2021, 55(9): 1134-1141.
[4] WU Lei, CAI Daolin, CHEN Yifeng, et al. Impact of continuous RESET/SET operations on endurance characteristic of phase change memory[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1134-1141.
[5] XIE C C, LI X, LEI Y, et al. BIST-based fault diagnosis for PCM with enhanced test scheme and fault-free region finding algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(7): 1652-1664.
[6] ZHU M, REN K, SONG Z T. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory[J]. MRS Bulletin, 2019, 44(9): 715-720.
[7] NOé P, VERDY A, D’ACAPITO F, et al. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed[J]. Science Advances, 2020, 6(9): 2830.
[8] CHENG H Y, CARTA F, CHIEN W C, et al. 3D cross-point phase-change memory for storage-class memory[J]. Journal of Physics D: Applied Physics, 2019, 52(47): 473002.
[9] CHOI J T, AN B K, KIM T T H, et al. Development of PCM and OTS macro-models for HSPICE compatible simulation[C]//Electron Devices Technology and Manufacturing Conference. Singapore: IEEE, 2019: 463-465.
[10] CHEN X H, DING F L, HUANG X Q, et al. A robust and efficient compact model for phase-change memory circuit simulations[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4404-4410.
[11] CHEN Z Q, TONG H, CAI W, et al. Modeling and simulations of the integrated device of phase change memory and ovonic threshold switch selector with a confined structure[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1616-1621.
[12] CHEN X H, HU H F, HUANG X Q, et al. A SPICE model of phase change memory for neuromorphic circuits[J]. IEEE Access, 2020, 8: 95278-95287.
[13] PIGOT C, BOCQUET M, GILIBERT F, et al. Comprehensive phase-change memory compact model for circuit simulation[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4282-4289.
[14] SONODA K, SAKAI A, MONIWA M, et al. A compact model of phase-change memory based on rate equations of crystallization and amorphization[J]. IEEE Transactions on Electron Devices, 2008, 55(7): 1672-1681.
[15] WOO J, YU S M. Design space exploration of ovonic threshold switch (OTS) for sub-threshold read operation in cross-point memory arrays[C]//IEEE International Symposium on Circuits and Systems. Sapporo, Japan: IEEE, 2019: 1-5.
[16] YOO S, LEE H D, LEE S, et al. Electro-thermal model for thermal disturbance in cross-point phase-change memory[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1454-1459.
[17] TITIRSHA T, SONG S H, DAS A, et al. Endurance-aware mapping of spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(2): 288-301.
[18] CHEN W C, YIN W Y, LI E P, et al. Electrothermal investigation on vertically aligned single-walled carbon nanotube contacted phase-change memory array for 3-D ICs[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3258-3263.
[19] HU H F, LIU D Y, CHEN X H, et al. A compact phase change memory model with dynamic state variables[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 133-139.
[20] FAZIO A. Advanced technology and systems of cross point memory[C]//IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2020: 24.1. 1-24.1.4.
[21] XIONG F, BAE M H, DAI Y, et al. Self-aligned nanotube-nanowire phase change memory[J]. Nano Letters, 2013, 13(2): 464-469.
[22] SCOGGIN J, SILVA H, GOKIRMAK A. Field dependent conductivity and threshold switching in amorphous chalcogenides—Modeling and simulations of ovonic threshold switches and phase change memory devices[J]. Journal of Applied Physics, 2020, 128(23): 234503.
[23] CIL K, DIRISAGLIK F, ADNANE L, et al. Electrical resistivity of liquid Ge2Sb2Te5 based on thin-film and nanoscale device measurements[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 433-437.
[24] KIM S, KIM H D, CHOI S J. Intrinsic threshold switching responses in AsTeSi thin film[J]. Journal of Alloys and Compounds, 2016, 667: 91-95.
[25] LIU D Y, ZHANG L N, LIN X N, et al. A smooth and continuous phase change memory SPICE model for improved convergence[C]//IEEE 2nd Electron Devices Technology and Manufacturing Conference. Kobe, Japan: IEEE, 2018: 86-88.
文章导航

/