电子信息与电气工程

自适应动态周期下的移动水声网络自定位算法

展开
  • 1.长安大学 信息工程学院,西安 710064
    2.西北工业大学 航海学院,西安 710072
高婧洁(1988-),女,陕西省西安市人,讲师,主要从事水声网络通信与定位研究;E-mail:gaojingj@chd.edu.cn.

收稿日期: 2021-06-08

  网络出版日期: 2022-04-29

基金资助

国家自然科学基金(61901057);国家自然科学基金(61871059)

A Self-Localization Algorithm with Adaptive and Dynamic Observation Period for Mobile Underwater Acoustic Networks

Expand
  • 1. School of Information Engineering, Chang’an University, Xi’an 710064, China
    2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2021-06-08

  Online published: 2022-04-29

摘要

针对移动水声网络中定位精度与通信开销之间的矛盾,提出一种自适应动态周期下的移动水声网络自定位算法.该算法根据系统状态估计与观测采样之间的残差,设计自适应的动态周期选择机制和非均匀的动态更新网络定位周期,进而实现非均匀动态周期下的移动水声网络高精度预测定位.该算法无需大量通信观测即可实现移动节点位置的实时跟踪,达到了定位精度与通信开销间的平衡.仿真结果表明,所提算法既保证了网络的定位估计精度,又减小了冗余定位通信开销,实现了有限通信开销下的高精度定位,更适用于精度要求高且通信带宽有限的水下环境中.

本文引用格式

高婧洁, 王威, 申晓红 . 自适应动态周期下的移动水声网络自定位算法[J]. 上海交通大学学报, 2022 , 56(12) : 1658 -1665 . DOI: 10.16183/j.cnki.jsjtu.2021.193

Abstract

In order to resolve the conflicts between the communication traffic and the localization accuracy, a self-localization algorithm with adaptive and dynamic observation period for mobile underwater acoustic networks (MUANs) was proposed to improve the localization performance. First, an adaptive and dynamic observation period selection scheme was designed, which could generate a non-uniform observation period vector according to the residual change. Then, based on the non-uniform observation period vector, a self-localization algorithm was proposed, which could precisely predict the trajectory of each mobile node in the network. The simulation results show that the proposed algorithm, which could balance the tradeoff between the localization accuracy and the communication cost, is more suitable for the underwater environment.

参考文献

[1] 冯艺璇, 肖东, 陈岩, 等. 无精准同步的小规模水声网络节点相对自定位[J]. 声学学报, 2020, 45(4): 486-496.
[1] FENG Yixuan, XIAO Dong, CHEN Yan, et al. Relative self-positioning method for small-scale underwater acoustic network nodes without precise synchronization[J]. ACTA ACUSTICA, 2020, 45(4): 486-496.
[2] 方国灿. 水声传感网络中水下移动节点的分布式定位方法研究[D]. 杭州: 浙江大学, 2019.
[2] FANG Guocan. Distributed positioning method of mobile nodes in underwater acoustic networks[D]. Hangzhou: Zhejiang University, 2019.
[3] TOKY A, SINGH R P, DAS S. Localization schemes for underwater acoustic sensor networks—A review[J]. Ad Hoc Networks, 2020, 37: 1-18.
[4] SAEED N, CELIK A, Al NAFFOURI T Y, et al. Underwater optical wireless communications, networking, and localization: A survey[J]. Ad Hoc Networks, 2018: 32-41.
[5] JIA T, HO K C, WANG H. Localization of a moving object with sensors in motion by time delays and doppler shifts[J]. IEEE Transactions on Signal Processing, 2020, 68: 5824-5841.
[6] SUN S, QIN S, HAO Y. Underwater acoustic localization of the black box based on generalized second-order time difference of arrival (GSTDOA)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 99: 1-11.
[7] SUN S, ZHANG X, ZHENG C. Underwater Acoustical localization of the black box utilizing single autonomous underwater vehicle based on the second-order time difference of arrival[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1268-1279.
[8] CHOI J, SHIN J, YI Y. Information source localization with protector diffusion in networks[J]. Journal of Communications and Networks, 2019, 21(2): 136-147.
[9] HUANG Y, ZHANG Y, XU B, et al. A new adaptive extended Kalman filter for cooperative localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 353-368.
[10] SOARES C, GOME J, FERRERIA B, et al. LocDyn: Robust distributed localization for mobile underwater networks[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 1063-1074.
文章导航

/