机械与动力工程

基于CNN-RNN组合模型的办公建筑能耗预测

展开
  • 1.上海交通大学 机械与动力工程学院,上海 200240
    2.广东美的暖通设备有限公司,广东 佛山 528311
曾国治(1998-),男,四川省泸州市人,硕士生,主要从事智慧建筑与建筑节能研究.

收稿日期: 2021-05-23

  网络出版日期: 2022-10-09

Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Guangdong Midea HVAC Equipment Co., Ltd., Foshan 528311, Guangdong, China

Received date: 2021-05-23

  Online published: 2022-10-09

摘要

为准确反映办公建筑的运行特性,利用卷积神经网络(CNN)良好的特征提取能力与循环神经网络(RNN)良好的时序学习能力,提出用于预测办公建筑能耗的CNN-RNN组合模型,并对应设计了适用于深度学习模型的二维矩阵数据输入结构.案例分析结果表明,相较于简单循环神经网络和长短期记忆网络,CNN-RNN组合模型的预测精度与计算效率均显著提升,模型泛化性好.

本文引用格式

曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强 . 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022 , 56(9) : 1256 -1261 . DOI: 10.16183/j.cnki.jsjtu.2021.192

Abstract

In order to accurately reflect the operation characteristics of office buildings, a convolutional neural network(CNN)-recurrent neural network(RNN)combined model for energy consumption prediction of office buildings is proposed by using the good feature extraction ability of CNN and the good time series learning ability of RNN. Besides, a two-dimensional matrix data input structure suitable for the deep learning model is designed. The case study results show that compared with the simple recurrent neural network and long short term memory network, both the prediction accuracy and computational efficiency of CNN-RNN combined model are significantly improved, and the generalization of the model is also good.

参考文献

[1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能, 2021, 49(2): 1-6.
[1] China Association of Building Energy Efficiency. China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2): 1-6.
[2] FOUCQUIER A, ROBERT S, SUARD F, et al. State of the art in building modelling and energy performances prediction: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 272-288.
[3] GASSAR A A A, CHA S H. Energy prediction techniques for large-scale buildings towards a sustainable built environment: A review[J]. Energy and Buildings, 2020, 224: 110238.
[4] FU X, ZENG X J, FENG P P, et al. Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China[J]. Energy, 2018, 165: 76-89.
[5] KIM J H, SEONG N C, CHOI W. Forecasting the energy consumption of an actual air handling unit and absorption chiller using ANN models[J]. Energies, 2020, 13(17): 4361.
[6] ROBINSON C, DILKINA B, HUBBS J, et al. Machine learning approaches for estimating commercial building energy consumption[J]. Applied Energy, 2017, 208: 889-904.
[7] RAJAGUKGUK R A, RAMADHAN R A A, LEE H J. A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power[J]. Energies, 2020, 13(24): 6623.
[8] FAN C, SUN Y J, ZHAO Y, et al. Deep learning-based feature engineering methods for improved building energy prediction[J]. Applied Energy, 2019, 240: 35-45.
[9] 廖文强, 王江宇, 陈焕新, 等. 基于深度学习的建筑能耗短期预测方法研究[C]// 2019年中国家用电器技术大会论文集. 佛山: 电器杂志社, 2019: 1173-1178
[9] LIAO Wenqiang, WANG Jiangyu, Chen Huanxin, et al. Research on short-term building energy consumption prediction method based on deep-learning[C]// Proceeding of 2019 China Household Electrical Appliances Technical Conference. Foshan, China: Appliance, 2019: 1173-1178.
[10] 邹锋, 田大伟, 王悦, 等. 基于生成对抗网络的深度学习能耗预测算法[J]. 电脑知识与技术, 2019, 15(2): 198-200.
[10] ZOU Feng, TIAN Dawei, WANG Yue, et al. Deep learning energy consumption prediction algorithms based on generative adversarial networks[J]. Computer Knowledge and Technology, 2019, 15(2): 198-200.
[11] RUNGE J, ZMEUREANU R. A review of deep learning techniques for forecasting energy use in buildings[J]. Energies, 2021, 14(3): 608.
[12] YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: An overview and application in radiology[J]. Insights into Imaging, 2018, 9(4): 611-629.
[13] HAZRA A, CHOUDHARY P, SHEETAL S M. Recent advances in deep learning techniques and its applications: An overview[C]// Advances in Biomedical Engineering and Technology. Singapore: Springer, 2020: 103-122.
[14] Iowa State University. Iowa environmental mesonet[DB/OL]. (2019-10-22) [2021-03-16]. http://mesonet.agron.iastate.edu/request/download.phtml?network=CN__ASOS#.
文章导航

/