船舶海洋与建筑工程

减振垫层温频变动力性能对无砟轨道振动特性影响

展开
  • 华东交通大学 铁路环境振动与噪声教育部工程研究中心,南昌 330013
牛振宇(1996-),男,河南省鹤壁市人,硕士生,从事高速铁路减振降噪研究.

收稿日期: 2021-01-22

  网络出版日期: 2022-10-09

基金资助

国家自然科学基金(51578238);国家自然科学基金(51968025);江西省自然科学基金重点项目(20192ACBL20009);江西省青年科学基金(20202BABL214048)

Effect of Dynamic Properties of Temperature and Frequency-Dependent Properties of Damping Layer on Vibration Characteristics of Ballastless Track

Expand
  • Engineering Research Center of Railway Environment Virbration and Noise of the Ministry of Education, East China Jiaotong University, Nanchang 330013, China

Received date: 2021-01-22

  Online published: 2022-10-09

摘要

以减振垫层为研究对象,首先通过动态力学性能试验,基于高阶分数阶导数FVMP模型并结合温频等效原理,表征减振垫层的温频变特性;然后将该模型应用于车辆-CRTSIII板式无砟轨道垂向耦合系统中;最后分析了减振垫层温频变特性对轨道结构振动响应的影响.结果表明:温度和加载频率对减振垫层的动态力学性能有显著影响,高阶分数阶导数FVMP模型能准确表征这种动态力学行为.在时域响应中,轨道板位移和加速度在FVMP模型下计算的峰值明显大于Kelvin-Voigt(K-V)模型下的峰值.FVMP模型在各参考温度点下轨道板位移的响应呈现出随着温度的降低而减小的趋势,而轨道板加速度则呈现随着温度的降低而增大的趋势.在中高频段内,轨道板的响应表现为FVMP模型下的频域响应大于K-V模型下的频域响应,FVMP模型各参考温度点在该频段内轨道板的响应表现为随着温度的降低而减小的趋势.因此,为提高对轨道结构预测的准确性,有必要考虑减振垫层的温频变特性.

本文引用格式

牛振宇, 刘林芽, 秦佳良, 左志远 . 减振垫层温频变动力性能对无砟轨道振动特性影响[J]. 上海交通大学学报, 2022 , 56(9) : 1238 -1246 . DOI: 10.16183/j.cnki.jsjtu.2021.030

Abstract

Taking the damping layer as the research object, first, by using the dynamic mechanical test, based on the high-order fractional derivative FVMP model, and in combination with the temperature-frequency equivalent principle, the temperature and frequency dependent properties of the damping layer was characterized. Then, the model was applied to the vehicle-CRTSIII slab ballastless track coupled system. Finally, the effect of the temperature and frequency dependent properties of the damping layer on track structure vibration response was analyzed. The results show that the temperature and the loading frequency have a significant impact on the dynamic mechanical properties on the damping layer and the high-order fractional derivative FVMP model can accurately characterize this property. In the time domain response, the peak values of the slab track displacement and the acceleration on the FVMP model are significantly larger than those on the K-V model. At each reference temperature point, the displacement response of the slab track on the FVMP model decreases with the decrease of temperature, while the acceleration of the slab track shows an opposite trend. In the middle and high frequency band, the frequency domain response of the slab track on the FVMP model are greater than those on the K-V model. At each reference temperature point, the response of the slab track on the FVMP model decreases with the decrease of the temperature. Therefore, in order to improve the accuracy of the track structure prediction, it is necessary to consider the temperature and frequency dependent properties of the damping layer.

参考文献

[1] 宋瑞, 刘林芽, 徐斌, 等. 铁路桥上减振CRTS-III型无砟轨道振动响应及车辆平稳性分析[J]. 铁道科学与工程学报, 2019, 16(4): 835-842.
[1] SONG Rui, LIU Linya, XU Bin, et al. Vibration and ride quality analysis of CRTS-III ballastless track with anti-vibration structure on railway bridge[J]. Journal of Railway Science and Engineering, 2019, 16(4): 835-842.
[2] LIU L Y, ZUO Z Y, ZHOU Y L, et al. Insights into the effect of WJ-7 fastener rubber pad to vehicle-rail-viaduct coupled dynamics[J]. Applied Sciences, 2020, 10(5): 1889.
[3] SHI H L, WU P B. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers. Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1745-1759.
[4] SINGH M P, MORESCHI L M. Optimal placement of dampers for passive response control[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(4): 955-976.
[5] 张大伟, 翟婉明, 朱胜阳, 等. 基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J]. 铁道学报, 2016, 38(12): 19-27.
[5] ZHANG Dawei, ZHAI Wanming, ZHU Shengyang, et al. Wheel-rail dynamic interaction between heavy-haul freight car and ballasted track based on a nonlinear rubber spring model[J]. Journal of the China Railway Society, 2016, 38(12): 19-27.
[6] 赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53(3): 378-383.
[6] ZHAO Yongling, HOU Zhichao. Two viscoelastic constitutive models of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378-383.
[7] 袁菁江, 唐进锋, 刘文峰, 等. 客货共线铁路桥上减振型CRTSIII板式无砟轨道减振层刚度动力学影响分析[J]. 铁道科学与工程学报, 2019, 16(7): 1614-1621.
[7] YUAN Jingjiang, TANG Jinfeng, LIU Wenfeng, et al. Dynamic effect analysis of damping layer stiffness of vibration reducing CRTSIII slab ballastless track on mixed passenger and freight railway bridge[J]. Journal of Railway Science and Engineering, 2019, 16(7): 1614-1621.
[8] ZHU S Y, CAI C B, SPANOS P D. A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems[J]. Journal of Sound and Vibration, 2015, 335: 304-320.
[9] YANG F, WANG P, WEI K, et al. Investigation on nonlinear and fractional derivative Zener model of coupled vehicle-track system[J]. Vehicle System Dynamics, 2020, 58(6): 864-889.
[10] WEI K, ZHAO Z M, REN J J, et al. High-speed vehicle-slab track coupled vibration analysis of the viscoelastic-plastic dynamic properties of rail pads under different preloads and temperatures[J]. Vehicle System Dynamics, 2021, 59(2): 171-202.
[11] LIU J G, XU M Y. Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions[J]. Mechanics of Time-Dependent Materials, 2006, 10(4): 263-279.
[12] WEI K, DOU Y L, WANG F, et al. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863.
[13] 刘林芽, 卢沛君, 秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析[J]. 铁道学报, 2019, 41(5): 93-100.
[13] LIU Linya, LU Peijun, QIN Jialiang. Random vibration analysis of vehicle-track coupling system based on fastener FVMP model[J]. Journal of the China Railway Society, 2019, 41(5): 93-100.
[14] 翟婉明. 车辆-轨道耦合动力学[M]. 第4版. 北京: 科学出版社, 2015.
[14] ZHAI Wanming. Vehicle-track coupled dynamics[M]. 4th ed. Beijing: Science Press, 2015.
[15] WEI K, WANG F, WANG P, et al. Effect of temperature-and frequency-dependent dynamic properties of rail pads on high-speed vehicle-track coupled vibrations[J]. Vehicle System Dynamics, 2017, 55(3): 351-370.
[16] SPANOS P D, EVANGELATOS G I. Response of a non-linear system with restoring forces governed by fractional derivatives-Time domain simulation and statistical linearization solution[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 811-821.
[17] 曾志平, 刘付山, 王卫东, 等. 考虑轨道谱概率分布的不平顺样本模拟方法[J]. 铁道工程学报, 2020, 37(9): 7-11.
[17] ZENG Zhiping, LIU Fushan, WANG Weidong, et al. Irregularity samples simulation method considering the probability distribution of track spectrum[J]. Journal of Railway Engineering Society, 2020, 37(9): 7-11.
文章导航

/