船舶海洋与建筑工程

水泥净浆弹性模量的纳米压痕表征与多尺度计算

展开
  • 1.上海交通大学 船舶海洋与建筑工程学院;上海市公共建筑和基础设施数字化运维重点实验室,上海 200240
    2.中冶建筑研究总院有限公司,北京 100088
陈小文(1996-),男,福建省福州市人,硕士生,从事水泥基材料纳米压痕表征研究.

收稿日期: 2021-03-19

  网络出版日期: 2022-10-09

基金资助

国家自然科学基金(51308334);国家自然科学基金(51479113);国家重点研发计划(2016YFC0701003);国防科技创新特区项目13-07主题

Multiscale Calculation of Elastic Modulus of Cement Paste Based on Grid Nanoindentation Technology

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering;Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Central Research Institute of Building and Construction, MCC Group Co., Ltd., Beijing 100088, China

Received date: 2021-03-19

  Online published: 2022-10-09

摘要

基于微观力学测试和复合材料理论,计算水泥基材料的多尺度弹性参数,是水泥基材料基于性能的精细化设计理论基础之一.本研究对不同水灰比的硬化水泥净浆试样进行微观弹性模量的纳米压痕测试和孔隙结构压汞试验,基于多相材料均质化理论,建立考虑孔隙影响的水泥净浆弹性模量多尺度计算方法,并比较稀疏法、自洽法、Mori-Tanaka法、相互作用直推法和多层次均匀化法的适用性.计算结果表明,考虑孔隙作用的多相、多尺度计算方法与水泥净浆试件的宏观弹模测试结果吻合良好,除多层次均匀化法外,其他复合材料均匀化方法的计算结果相近.

本文引用格式

陈小文, 韩宇栋, 丁小平, 侯东伟 . 水泥净浆弹性模量的纳米压痕表征与多尺度计算[J]. 上海交通大学学报, 2022 , 56(9) : 1199 -1207 . DOI: 10.16183/j.cnki.jsjtu.2021.089

Abstract

The calculation of multiscale elastic parameters of cementitious materials based on micromechanical tests and the composite material theory is one of the key theoretical bases for precise design of cementitious materials performance. In this paper, grid nanoindentation tests of microscopic elastic modulus and the mercury intrusion test were conducted on hardened cement paste specimens at different water-cement ratios, to establish a multiscale homogenization calculation method for the elastic modulus of cement paste considering the influence of pores. Besides, the applicability of the dilute method, the self-consistent method, the Mori-Tanaka method, the interaction direct derivation (IDD) method, and the multilevel homogenization method was compared. The results show that the multi-phase and multi-scale calculations considering the effect of pores is in good agreement with experimental values. Except the multi-level homogenization method, the calculation results of several commonly used composite homogenization methods are similar.

参考文献

[1] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[2] VELEZ K, MAXIMILIEN S, DAMIDOT D, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker[J]. Cement and Concrete Research, 2001, 31(4): 555-561.
[3] CONSTANTINIDES G, ULM F J, VLIET K. On the use of nanoindentation for cementitious materials[J]. Materials and Structures, 2003, 36: 191-196.
[4] CONSTANTINIDES G, CHANDRAN K S R, ULM F J, et al. Grid indentation analysis of composite microstructure and mechanics: Principles and validation[J]. Materials Science and Engineering A, 2006, 430(1/2): 189-202.
[5] ULM F J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692.
[6] RANDALL N X, VANDAMME M, ULM F J. Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces[J]. Journal of Materials Research, 2009, 24(3): 679-690.
[7] NĚMEČEK J, ŠMILAUER V, KOPECKÝ L. Nanoindentation characteristics of alkali-activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2): 163-170.
[8] HU C L, LI Z J. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90: 80-90.
[9] HU C L. Microstructure and mechanical properties of fly ash blended cement pastes[J]. Construction and Building Materials, 2014, 73: 618-625.
[10] BERNARD O, ULM F J, LEMARCHAND E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials[J]. Cement and Concrete Research, 2003, 33(9): 1293-1309.
[11] CONSTANTINIDES G, ULM F J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1): 67-80.
[12] ZAOUI A. Continuum micromechanics: Survey[J]. Journal of Engineering Mechanics, 2002, 128(8): 808-816.
[13] SANAHUJA J, DORMIEUX L, CHANVILLARD G. Modelling elasticity of a hydrating cement paste[J]. Cement and Concrete Research, 2007, 37(10): 1427-1439.
[14] JIANG L, ZHANG Y M, HU C L, et al. Calculation of elastic modulus of early-age cement paste[J]. Advances in Cement Research, 2012, 24(4): 193-201.
[15] GAO X, WEI Y, HUANG W. Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste[J]. Construction and Building Materials, 2017, 153: 25-35.
[16] LIANG S M, WEI Y, WU Z H. Multiscale modeling elastic properties of cement-based materials considering imperfect interface effect[J]. Construction and Building Materials, 2017, 154: 567-579.
[17] DAMIEN D, WANG Y, XI Y P. Prediction of elastic properties of cementitious materials based on multiphase and multiscale micromechanics theory[J]. Journal of Engineering Mechanics, 2019, 145(10): 04019074.
[18] PAPADOPOULOS V, IMPRAIMAKIS M. Multiscale modeling of carbon nanotube reinforced concrete[J]. Composite Structures, 2017, 182: 251-260.
[19] XU J, WANG B B, ZUO J Q. Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach[J]. Cement and Concrete Composites, 2017, 81: 1-10.
[20] GÖBEL L, BOS C, SCHWAIGER R, et al. Micromechanics-based investigation of the elastic properties of polymer-modified cementitious materials using nanoindentation and semi-analytical modeling[J]. Cement and Concrete Composites, 2018, 88: 100-114.
[21] ADESSINA A, BEN FRAJ A, BARTHÉLÉMY J F, et al. Experimental and micromechanical investigation on the mechanical and durability properties of re-cycled aggregates concrete[J]. Cement and Concrete Research, 2019, 126: 105900.
[22] STEFANIUK D, NIEWIADOMSKI P, MUSIAŁ M, et al. Elastic properties of self-compacting concrete modified with nanoparticles: Multiscale approach[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1150-1162.
[23] FANG G H, ZHANG M Z. Multiscale micromecha-nical analysis of alkali-activated fly ash-slag paste[J]. Cement and Concrete Research, 2020, 135: 106141.
[24] ZHANG Y, YAN Z G, JU J W, et al. A multi-level micromechanical model for elastic properties of hybrid fiber reinforced concrete[J]. Construction and Buil-ding Materials, 2017, 152: 804-817.
[25] HONORIO T, BROCHARD L, BARY B. Statistical variability of mechanical fields in thermo-poro-elasticity: Multiscale analytical estimations applied to cement-based materials at early-age[J]. Cement and Concrete Research, 2018, 110: 24-41.
[26] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.
[27] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
[27] SHEN Guanlin, HU Gengkai. Mechanics of compo-site materials[M]. Beijing: Tsinghua University Press, 2006.
[28] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574.
[29] HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222.
[30] ZHENG Q S, DU D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765-2788.
[31] 朱合华, 陈庆. 多相材料有效性能预测的高精度方法[J]. 力学学报, 2017, 49(1): 41-47.
[31] ZHU Hehua, CHEN Qing. An approach for predicting the effective properties of multiphase composite with high accuracy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47.
[32] JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cement and Concrete Research, 2008, 38(3): 275-289.
[33] JENNINGS H M, THOMAS J J, GEVRENOV J S, et al. A multi-technique investigation of the nanoporosity of cement paste[J]. Cement and Concrete Research, 2007, 37(3): 329-336.
文章导航

/