半浸桨不同半径切面入水的水动力特性
收稿日期: 2021-05-20
网络出版日期: 2022-10-09
基金资助
国家自然科学基金(51679052);国家自然科学基金(51809055);国家自然科学基金(51909043);国家自然科学基金(51639004);国防基础科研计划(JCKY2016604B001);黑龙江省自然科学基金(E2018026)
Hydrodynamic Characteristics of a Surface Piercing Propeller Entering Water with Different Radiuses
Received date: 2021-05-20
Online published: 2022-10-09
为探究半浸桨无因次切面位置对半浸桨杯型切面入水过程水动力特性的影响,选择了半浸桨0.6、0.7、0.8无因次半径处的杯型切面进行建模.通过求解RANS方程模拟杯型切面入水过程的同时,结合流体域体积方法以及重叠网格技术,建立可靠的数值方法,研究不同切面位置的半浸桨杯型切面入水过程的水动力特性.分析不同切面位置对半浸桨杯型切面入水过程的自由液面形式、通气腔形式、流场以及表面压力分布的影响.结果表明:随着无因次半径剖面位置越靠近半浸桨的梢部,完全通气状态与部分通气状态之间的过渡状态会发生在较大的进速系数下,横向力系数和敞水效率也会有所增加.
丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩 . 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022 , 56(9) : 1188 -1198 . DOI: 10.16183/j.cnki.jsjtu.2021.169
In order to investigate the influence of a dimensionless section position of a surface piercing propeller on the hydrodynamic characteristics of the surface piercing propeller cup section, the cup section of the surface piercing propeller at the dimensionless radius of 0.6, 0.7, and 0.8 is selected for modeling. By solving the RANS equation to simulate the cup section entry process, in combination with the volume of fluid method and the overlapping grid technique, a reliable numerical method is established. The hydrodynamic characteristics of the water entry process of the surface piercing propeller cup section at different section positions are studied. The effects of different section positions on the free surface form, ventilation cavity form, flow field, and the surface pressure distribution in the water entry process of the surface piercing propeller cup section are analyzed. The results show that with the position of the dimensionless radius section getting closer to the tip of the surface piercing propeller, the transition state between the fully ventilated state and the partially ventilated state occurs at a larger speed coefficient, and the transverse force coefficient and the open water efficiency increases.
[1] | SEYYEDI S, SHAFAGHAT R, SIAVOSHIAN M. Experimental study of immersion ratio and shaft inclination angle in the performance of a surface-piercing propeller[J]. Mechanical Sciences, 2019, 10(1): 153-167. |
[2] | OLOFSSON N. Force and flow characteristics of a partially submerged propeller[D]. Sweden: Chalmers University of Technology, 1996. |
[3] | YARI E, GHASSEMI H. Numerical analysis of surface piercing propeller in unsteady conditions and cupped effect on ventilation pattern of blade cross-section[J]. Journal of Marine Science and Technology, 2016, 21(3): 501-516. |
[4] | JAVANMARD E, YARI E, MEHR J A. Numerical investigation on the effect of shaft inclination angle on hydrodynamic characteristics of a surface-piercing propeller[J]. Applied Ocean Research, 2020, 98: 102108. |
[5] | NOUROOZI H, ZERAATGAR H. A reliable simulation for hydrodynamic performance prediction of surface-piercing propellers using URANS method[J]. Applied Ocean Research, 2019, 92: 101939. |
[6] | JAVANMARDI N, GHADIMI P. Hydroelastic analysis of surface-piercing propeller through one-way and two-way coupling approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(3): 844-856. |
[7] | 任振. 不同通气形式下半浸式螺旋桨水动力性能数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
[7] | REN Zhen. The numerical study on hydrodynamic performance of surface piercing propeller with different ventilation modes[D]. Harbin: Harbin Engineering University, 2017. |
[8] | 袁煜明. 高速滑行艇后半浸桨的水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
[8] | YUAN Yuming. Study on hydrodynamic performance of surface piercing propeller for high-speed planning craft[D]. Harbin: Harbin Engineering University, 2018. |
[9] | 任振, 王超, 韩晓坤, 等. 浸深比对半浸桨水动力特性影响的数值分析[J]. 哈尔滨工程大学学报, 2018, 39(1): 1-9. |
[9] | REN Zhen, WANG Chao, HAN Xiaokun, et al. Numerical analysis of the influence of immersion ratio on the hydrodynamic characteristics of surface piercing propeller[J]. Journal of Harbin Engineering University, 2018, 39(1): 1-9. |
[10] | 任振, 王超, 万德成, 等. 自然通气状态下半浸桨水动力特性数值分析[J]. 上海交通大学学报, 2018, 52(6): 636-642. |
[10] | REN Zhen, WANG Chao, WAN Decheng, et al. Numerical analysis of hydrodynamic characteristics of surface piercing propeller under naturally ventilated condition[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 636-642. |
[11] | 袁煜明, 王超, 任振. 通气管直径对半浸式螺旋桨水动力影响[J]. 哈尔滨工程大学学报, 2019, 40(2): 227-233. |
[11] | YUAN Yuming, WANG Chao, REN Zhen. Influence of diameter of vent pipe on hydrodynamic characteristics of surface piercing propeller[J]. Journal of Harbin Engineering University, 2019, 40(2): 227-233. |
[12] | REN Z, LIN H, PENG H J. Numerical analysis on hydrodynamic characteristics of surface piercing propellers in oblique flow[J]. Water, 2019, 11(1): 2015. |
[13] | YANG D, REN Z, GUO Z, et al. Numerical analysis on the hydrodynamic performance of an artificially ventilated surface piercing propeller[J]. Water, 2018, 10(11), 1499-1511. |
[14] | NASRIN J, PARVIZ G, SASAN T. Probing into the effects of cavitation on hydrodynamic characteristics of surface piercing propellers through numerical modeling of oblique water entry of a thin wedge[J]. Brodogradnja, 2018, 69(2): 151-168. |
[15] | 俞永清, 余建星, 丁恩宝, 等. 二维“杯”形随边超空泡剖面入水数值研究[J]. 船舶力学, 2008, 12(4): 539-544. |
[15] | YU Yongqing, YU Jianxing, DING Enbao, et al. Numerical research on entry water of 2D supercavitating hydrofoil section with cup at trailing edge[J]. Journal of Ship Mechanics, 2008, 12(4): 539-544. |
[16] | 常晟铭, 丁恩宝, 王超. 半浸桨二维杯型切面入水现象的数值分析[C]// 第三十一届全国水动力学研讨会. 厦门: 海洋出版社, 2020. |
[16] | CHANG Shengming, DING Enbao, WANG Chao. Numerical analysis of the water entry of the two-dimensional cup section of surface piercing propeller[C]// The 31st National Symposium on Hydrodynamics. Xiamen, China: China Ocean Press, 2020. |
[17] | SCOLAN Y M. Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid[J]. Journal of Sound and Vibration, 2004, 277(1/2): 163-203. |
[18] | OGER G, GUICHER P M, JACQUIN E, et al. Simulations of hydro-elastic impacts using a parallel SPH model[C]// The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: International Journal of Offshore and Polar Engineers, 2010. |
[19] | KHAYYER A, GOTOH H, PARK J C, et al. An enhanced fully Lagrangian coupled MPS-based solver for fluid-structure interactions[J]. Collection of Proceedings of the Civil Engineering Society B2 (Coastal Engineering), 2015, 71(2): I_883-I_888. |
/
〈 |
|
〉 |