冰与斜面结构作用过程的离散元模拟与分析
收稿日期: 2021-05-26
网络出版日期: 2022-10-09
基金资助
国家自然科学基金(41806221);国家自然科学基金(41676087);中央高校基本科研业务费(DUT20JC27);中央高校基本科研业务费(DUT21JC34)
Discrete Element Simulation and Analysis of Ice-Inclined Structure Interaction
Received date: 2021-05-26
Online published: 2022-10-09
斜面结构是冰区海洋结构的重要形式之一.斜面倾角变化会改变海冰的主要破坏模式,使结构所受冰荷载的峰值有较大变化.为了更好地模拟平整冰破碎的随机性特点,构建了具有黏结-破碎功能的非规则分布的扩展圆盘单元海冰模型,并基于该模型模拟了平整冰与斜面结构作用的动力过程.通过将数值模拟所得冰力峰值与实测冰力峰值进行比较,对该模型进行了验证,分析了斜面倾角对冰荷载及海冰破坏模式的影响规律.结果发现:数值模拟的冰荷载随结构倾角的变化趋势与二维理论模型计算的变化趋势基本一致,斜面倾角的增加会导致弯曲破坏所占比例减小,并造成冰荷载峰值及发生概率都呈增大趋势,斜面倾角是影响海冰破坏模式变化以及冰荷载大小的重要因素.该研究工作可以为海冰的离散元数值模拟及斜面海洋工程结构的抗冰设计提供借鉴和参考.
王延林, 郭麒, 孙珊珊, 魏思浩, 许宁 . 冰与斜面结构作用过程的离散元模拟与分析[J]. 上海交通大学学报, 2022 , 56(9) : 1168 -1175 . DOI: 10.16183/j.cnki.jsjtu.2021.182
Inclined structure is an important marine structure in the iced area. The change of the inclined angle will change the main failure mode of sea ice and affect the peak ice force acted on the structure. In order to simulate the random breaking characteristics of level ice, an irregular distributed dilated disk element model with bond-break function is constructed, and the dynamic process of interaction between the level ice and the inclined structure is simulated based on this model, which is verified by comparing the peak ice forces obtained by numerical simulation with the peak ice forces measured in the field. The influence law of the inclined angle on the ice force and the ice failure mode is analyzed. It shows that the variation of ice load with the changes of inclined angles simulated by the numerical method is basically consistent with the variation calculated by the two-dimensional theoretical model. With the increase of the incline angle, the proportion of bending failure decreases and the peak ice force and its occurrence probability increase. The inclined angle is an important factor in the change of sea ice failure modes and the peak ice force. This paper can be used as a reference for discrete element numerical simulation of sea ice and ice-resist design of inclined marine structures.
[1] | TIMCO G W, JOHNSTON M. Ice loads on the caisson structures in the Canadian Beaufort Sea[J]. Cold Regions Science and Technology, 2004, 38(2/3): 185-209. |
[2] | 白旭, 周利, 陶冶. 破冰结构角度对整冰失效模式的影响分析[J]. 极地研究, 2018, 30(4): 406-410. |
[2] | BAI Xu, ZHOU Li, TAO Ye. Slope angle of icebreaking structure and failure modes in level ice[J]. Chinese Journal of Polar Research, 2018, 30(4): 406-410. |
[3] | HOPKINS M A, SHEN H H. Simulation of pancake-ice dynamics in a wave field[J]. Annals of Glaciology, 2001, 33: 355-360. |
[4] | 李紫麟, 刘煜, 孙珊珊, 等. 船舶在碎冰区航行的离散元模型及冰载荷分析[J]. 力学学报, 2013, 45(6): 868-877. |
[4] | LI Zilin, LIU Yu, SUN Shanshan, et al. Analysis of ship maneuvering performances and ice loads on ship hull with discrete element model in broken-ice fields[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 868-877. |
[5] | 狄少丞. 基于GPU并行算法的海洋平台及船舶结构冰荷载的离散元分析[D]. 大连: 大连理工大学, 2015. |
[5] | DI Shaocheng. Discrete element simulation of ice load on offshore platform and ship hull based on GPU parallel algorithm[D]. Dalian: Dalian University of Technology, 2015. |
[6] | 龙雪, 宋础, 季顺迎, 等. 锥角对锥体结构抗冰性能影响的离散元分析[J]. 海洋工程, 2018, 36(6): 92-100. |
[6] | LONG Xue, SONG Chu, JI Shunying, et al. Influence of cone angle on anti-icing performance of conical structure with numerical simulations of discrete element method[J]. The Ocean Engineering, 2018, 36(6): 92-100. |
[7] | HOPKINS M A. Discrete element modeling with dilated particles[J]. Engineering Computations, 2004, 21(2/3/4): 422-430. |
[8] | SUN S S, SHEN H H. Simulation of pancake ice load on a circular cylinder in a wave and current field[J]. Cold Regions Science and Technology, 2012, 78: 31-39. |
[9] | 王延林, 张亚伟, 许宁, 等. 核电取水口海冰堆积问题的数值模拟[J]. 哈尔滨工程大学学报, 2019, 40(10): 1716-1722. |
[9] | WANG Yanlin, ZHANG Yawei, XU Ning, et al. Numerical simulation of sea ice pile-up on nuclear water intake structures[J]. Journal of Harbin Engineering University, 2019, 40(10): 1716-1722. |
[10] | SUN S S, SHEN H H. Is the wave-induced impact load from pancake ice important for offshore structures[C]// The 21st IAHR International Symposium on Ice. Dalian, China: IAHR, 2012. |
[11] | 丁德文. 工程海冰学概论[M]. 北京: 海洋出版社, 1999. |
[11] | DING Dewen. The generality of engineering glaciology of seas[M]. Beijing: Ocean Press, 1999. |
[12] | 屈衍, 岳前进, BRISTER C. 冰与锥体作用破碎周期及破碎长度分析[J]. 冰川冻土, 2003, 25(Sup.2): 326-329. |
[12] | QU Yan, YUE Qianjin, BRISTER C. Analysis of ice sheet break period and length on the ice-breaking cone[J]. Journal of Glaciology and Geocryology, 2003, 25(Sup.2): 326-329. |
[13] | RANTA J, POLOJÄRVI A, TUHKURI J. Scatter and error estimates in ice loads-Results from virtual experiments[J]. Cold Regions Science and Technology, 2018, 148: 1-12. |
[14] | PAAVILAINEN J, TUHKURI J. Parameter effects on simulated ice rubbling forces on a wide sloping structure[J]. Cold Regions Science and Technology, 2012, 81: 1-10. |
[15] | TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2): 107-129. |
[16] | Croasdale K R, Cammaert A B, Metge M. A method for the calculation of sheet ice loads on sloping structures[C]// IAHR 94 Proceedings of the 12th International Symposium on Ice. Trondheim, Norway: IAHR, 1994: 874-885. |
[17] | LUBBAD R, LØSET S. A numerical model for real-time simulation of ship-ice interaction[J]. Cold Regions Science and Technology, 2011, 65(2): 111-127. |
[18] | ZHOU L, CHUANG Z J, BAI X. Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 119-128. |
/
〈 |
|
〉 |