新型电力系统与综合能源

基于新型双环控制的LC型逆变器研究

展开
  • 南京工程学院 能源与动力工程学院, 南京 211167
李 双(1992-),男,江苏省泰兴市人,硕士生,主要研究方向为新能源发电技术.

收稿日期: 2021-07-31

  网络出版日期: 2022-10-09

基金资助

国家自然科学基金青年科学基金项目(51906098)

An LC Inverter Based on Novel Dual-Loop Control

Expand
  • School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China

Received date: 2021-07-31

  Online published: 2022-10-09

摘要

为提高LC型逆变器的电压跟踪和抗扰性能,提出了一种新型电压电流双环控制策略.首先,引入虚拟电阻后对消零极点,将电压环整定为一阶惯性环节,从而减小电压跟踪时的超调;其次,采用次速电流环控制方法提高电流环的响应速度,进而抑制暂态时的电压突变;最后,分析电压恢复期产生超调的原因并通过自适应积分器初值消除超调,改善了扰动时的电压波形畸变.所提新型控制策略在传统双环控制的基础上,分别对电压环和电流环算法进行改进,针对性地解决了后者阶跃响应和抗负载扰动性能不足的缺点,MATLAB/Simulink模型的仿真结果验证了该方法的可行性和有效性.

本文引用格式

李双, 施建强 . 基于新型双环控制的LC型逆变器研究[J]. 上海交通大学学报, 2022 , 56(9) : 1139 -1147 . DOI: 10.16183/j.cnki.jsjtu.2021.275

Abstract

To improve the voltage tracking and anti-disturbance performance of the LC inverter, a novel voltage-current dual-loop control strategy is proposed. First, the voltage loop is tuned to first-order inertia link by zero-pole cancellation based on virtual resistance, which restrains the overshoot during voltage tracking. Next, the hypo-time-optimal current-loop is adopted to enhance the response speed of the current loop, which suppresses the sudden change of transient voltage. Finally, the cause of overshoot during the voltage recovery period is analyzed and the overshoot is eliminated by the adaptive integrator initial value, which modifies the voltage waveform distortion under loading disturbance. Based on the traditional double-loop control, the voltage loop and the current loop are improved respectively by the proposed novel control strategy, which overcomes the shortcomings of step response and anti-load disturbance performance. The feasibility and effectiveness of this method are validated through simulations on MATLAB/Simulink.

参考文献

[1] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
[1] ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[2] 王念春, 徐发喜, 程明. 基于状态空间的逆变器数字双环控制技术研究[J]. 中国电机工程学报, 2013, 33(Sup.1): 166-170.
[2] WANG Nianchun, XU Faxi, CHENG Ming. Study on digital dual-loop control for inverters based on the state space[J]. Proceedings of the CSEE, 2013, 33(Sup.1): 166-170.
[3] 张雪妍, 付立军, 马凡, 等. 基于虚拟阻抗的逆变器输出电压动态性能优化[J]. 太阳能学报, 2020, 41(11): 38-45.
[3] ZHANG Xueyan, FU Lijun, MA Fan, et al. Dynamic performance optimization of inverter output voltage based on virtual impendance[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 38-45.
[4] 尹球洋, 王学华, 徐林. 一种实用前馈在逆变器带非线性负载中的应用[J]. 电力电子技术, 2018, 52(7): 1-6.
[4] YIN Qiuyang, WANG Xuehua, XU Lin. A practical feedforward for inverters with nonlinear loads[J]. Power Electronics, 2018, 52(7): 1-6.
[5] 曹文远, 韩民晓, 谢文强, 等. 基于扰动观测器的电压源型逆变器负载电流前馈控制及参数设计方法[J]. 电工技术学报, 2020, 35(4): 862-873.
[5] CAO Wenyuan, HAN Minxiao, XIE Wenqiang, et al. A disturbance-observer-based load current feedforward control and parameter design method for voltage-sourced inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 862-873.
[6] LOU G N, GU W, WANG J H, et al. A unified control scheme based on a disturbance observer for seamless transition operation of inverter-interfaced distributed generation[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5444-5454.
[7] WU Y H, YE Y Q. Internal model-based disturbance observer with application to CVCF PWM inverter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5743-5753.
[8] KIM E K, MWASILU F, CHOI H H, et al. An observer-based optimal voltage control scheme for three-phase UPS systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2073-2081.
[9] 苗德根, 侯世英, 王永胜, 等. 抑制恒压恒频逆变器输出电压谐波的改进前馈策略[J]. 电网技术, 2018, 42(10): 3361-3368.
[9] MIAO Degen, HOU Shiying, WANG Yongsheng, et al. Improved feedforward strategy for constant-voltage constant-frequency inverter for suppressing output voltage distortion[J]. Power System Technology, 2018, 42(10): 3361-3368.
[10] 袁义生, 胡根连, 袁世英. 基于二自由度PI控制的逆变器研究[J]. 电力电子技术, 2017, 51(11): 57-60.
[10] YUAN Yisheng, HU Genlian, YUAN Shiying. Researches for inverters based on two-freedom-degree PI controller[J]. Power Electronics, 2017, 51(11): 57-60.
[11] 李冬辉, 郑宏宇, 姚乐乐. 三相并网逆变器的混杂自动机模型分析[J]. 上海交通大学学报, 2019, 53(3): 348-354.
[11] LI Donghui, ZHENG Hongyu, YAO Lele. Analysis on hybrid automata model of three-phase grid inverter[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 348-354.
[12] YAZDANI A, IRAVANI R. Voltage-sourced converters in power systems: Modeling, control, and applications[M]. New Jersey: IEEE Press/John Wiley, 2010.
[13] KATSUHIKO, OGATA. Modern control engineering[M]. 5th ed. New Jersey: Pearson Education, 2010.
[14] 崔业兵, 左月飞, 桂亮, 等. 基于复合PI控制器的永磁伺服电机电流控制[J]. 电机与控制学报, 2019, 23(4): 105-110.
[14] CUI Yebing, ZUO Yuefei, GUI Liang, et al. Current control of permanent magnet servo motor based on compound PI controller[J]. Electric Machines and Control, 2019, 23(4): 105-110.
[15] 李云钢, 柯朝雄, 程虎. 磁浮列车悬浮控制器的电流环分析与优化设计[J]. 国防科技大学学报, 2006, 28(1): 94-97.
[15] LI Yungang, KE Zhaoxiong, CHENG Hu. Analyzing and optimizing design of current-loop in the magnetic levitation controller on maglev vehicle[J]. Journal of National University of Defense Technology, 2006, 28(1): 94-97.
文章导航

/