航空航天

波浪条件下地效翼型气动力的环量控制研究

展开
  • 1.南京航空航天大学 飞行器环境控制与生命保障工业与信息化部重点实验室, 南京 210016
    2.南京航空航天大学 民航学院, 南京 211106
    3.中国空气动力研究与发展中心高速空气动力研究所, 四川 绵阳 621000
刘 浩(1995-),男,河北省保定市人,博士生,从事地效飞行器和流动控制研究.

收稿日期: 2021-09-30

  网络出版日期: 2022-08-26

基金资助

江苏高校优势学科建设工程资助项目,中国空气动力研究与发展中心基础和前沿技术研究基金资助项目(PJD20200210)

Circulation Control of Airfoil Aerodynamic Force Under Ground Effect of Wavy Wall

Expand
  • 1. Key Laboratory of Aircraft Environment Control and Life Support of the Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    3. High Speed Aerodynamic Institute of China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China

Received date: 2021-09-30

  Online published: 2022-08-26

摘要

波浪海面气流环境相对复杂,严重影响了地效飞行器巡航过程中的稳定性与安全性.针对波浪条件下的地效翼型,应用数值方法分析了不同海况波浪形状和不同飞行攻角对翼型气动特性的影响,进一步研究了定常吹气和周期吹气方法对地效下的环量控制翼型气动力影响规律.计算结果表明:波浪海面地效下,翼型升力系数随波浪周期性变化,波浪的波高较高、波长较短,翼型攻角较大时升力系数波动的幅度较大;通过与波浪相对运动相同周期的吹气环量控制方法,可以有效地控制波浪海况下翼型升力系数的波动,增强地效飞行器的稳定性与安全性.

本文引用格式

刘浩, 孙建红, 孙智, 陶洋, 王德臣, 刘光远 . 波浪条件下地效翼型气动力的环量控制研究[J]. 上海交通大学学报, 2022 , 56(8) : 1101 -1110 . DOI: 10.16183/j.cnki.jsjtu.2021.384

Abstract

The interaction of airflow and sea waves seriously affects the flight stability and cruising safety of ground effect vehicles. The influence of different sea states and different angles of attack were analyzed numerically on the aerodynamic characteristics of the airfoil under ground effect of wavy wall. The influence of the constant blowing and periodic blowing methods was further studied on the aerodynamic force of the airfoil under ground effect. The simulation results show that the lift coefficient of the airfoil changes periodically with the wave under the wavy ground wall. The amplitude of the lift coefficient fluctuation is larger with the increasing of wave height and angle of attack, or the decreasing of wavelength. Applying the circulation control method for periodic blowing in the same period as the relative motion of the waves can effectively weaken the fluctuation of the airfoil lift coefficient under wavy sea conditions and improve the flight stability and safety of ground effect vehicles.

参考文献

[1] 张庆云, 王峥华, 魏猛, 等. 大型水陆两栖飞机增升装置特殊设计综述[J]. 空气动力学学报, 2019, 37(1): 19-32.
[1] ZHANG Qingyun, WANG Zhenghua, WEI Meng, et al. Review of high-lift devices design for amphibious aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(1): 19-32.
[2] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1): 18-34.
[2] HUANG Lingcai, YONG Mingpei. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 18-34.
[3] HSIUN C M, CHEN C K. Aerodynamic characteristics of a two-dimensional airfoil with ground effect[J]. Journal of Aircraft, 1996, 33(2): 386-392.
[4] AHMED M R, TAKASAKI T, KOHAMA Y. Aerodynamics of a NACA4412 airfoil in ground effect[J]. AIAA Journal, 2007, 45(1): 37-47.
[5] QU Q L, WANG W, LIU P Q, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack[J]. AIAA Journal, 2015, 53(4): 1048-1061.
[6] 刘浩, 孙建红, 张延泰, 等. 地面效应下的不同翼型亚声速气动特性分析[J]. 南京航空航天大学学报, 2020, 52(3): 408-415.
[6] LIU Hao, SUN Jianhong, ZHANG Yantai, et al. Aerodynamic characteristics of different airfoil in subsonic flow with ground effect[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(3): 408-415.
[7] 姜裕标, 王万波, 赵光银, 等. 地面效应对射流增升翼型性能影响实验研究[J]. 空气动力学学报, 2020, 38(5): 887-895.
[7] JIANG Yubiao, WANG Wanbo, ZHAO Guangyin, et al. Experimental investigation on blowing control airfoil influenced by ground effect[J]. Acta Aerodynamica Sinica, 2020, 38(5): 887-895.
[8] 姜裕标, 王万波, 常智强, 等. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报, 2017, 38(6): 48-57.
[8] JIANG Yubiao, WANG Wanbo, CHANG Zhiqiang, et al. Numerical simulation of effect of steady blowing slot-less flap airfoil in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 48-57.
[9] 秦绪国, 刘沛清, 屈秋林. 翼型波浪水面巡航地面效应数值模拟[J]. 北京航空航天大学学报, 2011, 37(3): 295-299.
[9] QIN Xuguo, LIU Peiqing, QU Qiulin. Numerical simulation on aerodynamics of airfoil flying over wavy water surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 295-299.
[10] 屈秋林, 刘沛清, 秦绪国. 地效飞行器近波浪地面大迎角飞行分离流动数值研究[J]. 空气动力学学报, 2008(2): 221-226.
[10] QU Qiulin, LIU Peiqing, QIN Xuguo. Numerical research on separated flow around a WIG craft flying over wavy ground at high incidence angle[J]. Acta Aerodynamica Sinica, 2008(2): 221-226.
[11] 米百刚, 詹浩. 近地、水面时的飞行器动态稳定特性数值模拟[J]. 船舶力学, 2017, 21(11): 1348-1355.
[11] MI Baigang, ZHAN Hao. Numerical simulation of aircraft dynamic stability characteristics flying over ground and water surface[J]. Journal of Ship Mechanics, 2017, 21(11): 1348-1355.
[12] HU H, MA D. Airfoil aerodynamics in proximity to wavy ground for a wide range of angles of attack[J]. Applied Sciences, 2020, 10(19): 6773.
[13] 孙建红, 刘浩, 孙智. 一种地效飞行器的增稳环量控制方法及增稳型地效飞行器: CN 113148148 A[P]. 2021-07-23[2021-09-30].
[13] SUN Jianhong, LIU Hao, SUN Zhi. An circulation control method to augment the stability of ground-effect aircraft and an stability augmentation ground-effect aircraft: CN 113148148 A[P]. 2021-07-23[2021-09-30].
[14] MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA-93-2906[R]. Orlando: AIAA, 1993.
[15] COLES D, WADCOCK A J. Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift[J]. AIAA Journal, 1979, 17(4): 321-329.
[16] 闫文辉, 薛然然. NACA4412翼型低速绕流数值计算中湍流模型对比[J]. 航空学报, 2017, 38(Sup.1): 33-40.
[16] YAN Wenhui, XUE Ranran. Comparison of turbulence models for numerical simulation of low-speed flow around NACA4412 airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Sup.1): 33-40.
[17] BHATTACHARYYA R. Dynamics of marine vehicles[M]. New York: Wiley, 1978: 101-121.
[18] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428.
[18] ZHU Ziqiang, WU Zongcheng. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428.
[19] FU Z J, CHU Y W, CAI Y S, et al. Numerical investigation of circulation control applied to flapless aircraft[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(6): 879-893.
[20] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570.
[21] 雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21.
[21] LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21.
[22] FRIEDMAN C, ARIELI R, LEVY Y. Lift build-up on circulation control airfoils[J]. Journal of Aircraft, 2016, 53(1): 1-12.
[23] 姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报, 2018, 39(7): 64-72.
[23] JIANG Yubiao, ZHANG Liu, HUANG Yong, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 64-72.
文章导航

/