机械与动力工程

航空发动机涡轮叶片尾缘楔形通道交错肋冷却实验

展开
  • 上海交通大学 机械与动力工程学院,上海 200240
肖克华(1998-),男,安徽省安庆市人,硕士生,主要从事燃气轮机叶片冷却研究.

收稿日期: 2021-05-18

  网络出版日期: 2022-08-26

基金资助

国家科技重大专项(2017-III-0009-0035);国家自然科学基金(11972230)

Experiment on Wedge-Shaped Latticework Channel Cooling Applied in Aero Engine Gas Turbine Blade Trailing Edge

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-05-18

  Online published: 2022-08-26

摘要

为研究涡轮叶片尾缘部分楔形通道交错肋流动传热性能,对其进行实验研究.实验应用瞬态液晶测试技术,对比研究了交错肋上、下主表面的局部传热特性,同时用压力扫描阀测得不同雷诺数下的通道压力损失.研究结果表明:尾缘段转折流动配置下,楔形通道交错肋上、下主表面传热差异显著,下主表面平均努塞尔数比上主表面平均高30%以上,尾缘楔形通道内交错肋结构主表面平均换热系数高出针肋结构约46%;交错肋上、下通道之间的交界面处存在强烈的质量交换作用,上、下主表面间断性的高换热区与上、下通道交界面呈现对应关系;随入口雷诺数的增加,通道压降快速增大.楔形通道交错肋压降是针肋的5~7倍,但其换热面积高出针肋107.4%,仍比针肋冷却增加约66%的综合换热性能.

本文引用格式

肖克华, 罗稼昊, 饶宇 . 航空发动机涡轮叶片尾缘楔形通道交错肋冷却实验[J]. 上海交通大学学报, 2022 , 56(8) : 1034 -1042 . DOI: 10.16183/j.cnki.jsjtu.2021.162

Abstract

In order to study the flow and heat transfer performance of wedge-shaped latticework channels in the turbine blade trailing edge, this paper conducted an experimental study by employing the transient liquid crystal (TLC) technique to investigate the local heat transfer characteristics of the upper and lower main surfaces and applying the pressure scanning valve to mesure the pressure loss of the channels at different Reynolds numbers. The experiment shows that there is a significant difference between the upper and lower main surfaces under the turning flow configuration condition at the trailing edge section. The average Nusselt number of the lower main surface is over 30% higher than that of the upper main surface. In heat transfer coefficient, the wedge-shaped latticework channel is over 46% higher than that of the needle rib channel. There is a strong mass exchange at the interface between the upper and lower channels of the latticework channel. The intermittent high heat transfer areas on the upper and lower main surfaces are corresponding to the interface. As the inlet Reynolds number increases, the channel pressure drop increases rapidly. The pressure drop of the wedge-shaped latticework channel is 5 to 7 times that of the needle ribs, but the heat transfer area of latticework channel is 107.4% higher than the needle ribs channel, and the overall thermal performance of the wedge-shaped latticework channel is still approximately 66% higher than that of the needle ribs channel.

参考文献

[1] HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. New York, USA: CRC Press, 2012.
[2] BUNKER R S. Latticework (vortex) cooling effectiveness-Part 1: Stationary channel experiments[C]// Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria: International Gas Turbine Institute, 2008: 909-918.
[3] ACHARYA S, ZHOU F, LAGRONE J, et al. Latticework(vortex) cooling effectiveness: Rotating channel experiments[J]. Journal of Turbomachinery, 2005, 127(3): 471-478.
[4] GORELOV V, GOIKHENBERG M, MALKOV V. The investigation of heat transfer in cooled blades of gas turbines[C]// 26th Joint Propulsion Conference. Reston, Virginia: AIAA, 1990: 1-4.
[5] GILLESPIE D R H, IRELAND P T, DAILEY G M. Detailed flow and heat transfer coefficient measurements in a model of an internal cooling geometry employing orthogonal intersecting channels[C]// Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany: International Gas Turbine Institute, 2014: 1-8.
[6] 邓宏武, 谭艳, 王佳仁, 等. 带交错肋结构涡轮叶片复合通道的实验[J]. 航空动力学报, 2010, 25(9): 1931-1937.
[6] DENG Hongwu, TAN Yan, WANG Jiaren, et al. Experimental study on the turbine blade cooling channel with crossed-ribs[J]. Journal of Aerospace Power, 2010, 25(9): 1931-1937.
[7] 邓宏武, 潘文艳, 陶智, 等. 开槽交错肋通道换热和流阻特性[J]. 北京航空航天大学学报, 2007, 33(10): 1158-1161.
[7] DENG Hongwu, PAN Wenyan, TAO Zhi, et al. Heat transfer and flow resistance in a notched crossed-rib channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1158-1161.
[8] RAO Y, ZANG S S. Flow and heat transfer characteristics in latticework cooling channels with dimple vortex generators[J]. Journal of Turbomachinery, 2014, 136(2): 021017.
[9] PARDESHI I, SHIH TOMI P, BRYDEN K M., et al. Flow and heat transfer in a rotating and non-rotating wedge-shaped cooling passage with ribs and pin fins[C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: AIAA, 2015: 1-10.
[10] WAGNER G, KOTULLA M, OTT P, et al. The transient liquid crystal technique: Influence of surface curvature and finite wall thickness[J]. Journal of Turbomachinery, 2005, 127(1): 175-182.
[11] EKKAD S V, HAN J C. A transient liquid crystal thermography technique for gas turbine heat transfer measurements[J]. Measurement Science and Technology, 2000, 11(7): 957-968.
[12] 许亚敏, 饶宇. 液晶热像测量精度分析及其在湍流传热研究中的应用[J]. 上海交通大学学报, 2013, 47(8): 1185-1190.
[12] XU Yamin, RAO Yu. Measurement accuracy and application of liquid crystal thermography technique in turbulent flow heat transfer[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1185-1190.
[13] SCHULZ S, BRACK S, TERZIS A, et al. On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals[J]. Experimental Thermal and Fluid Science, 2016, 70: 196-207.
[14] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[15] CARCASCI C, FACCHINI B, PIEVAROLI M, et al. Heat transfer and pressure drop measurements on rotating matrix cooling geometries for airfoil trailing edges[C]// Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Quebec, Canada: International Gas Turbine Institute, 2015: 1-13.
[16] SAHA K, ACHARYA S, NAKAMATA C. Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(1): 011001.
[17] LIANG C, RAO Y, LUO, J, et al. Experimental and numerical study of turbulent flow and heat transfer in a wedge-shaped channel with guiding pin fins for turbine blade trailing edge cooling[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121590.
[18] GEE D L, WEBB R L. Forced convection heat transfer in helically rib-roughened tubes[J]. International Journal of Heat and Mass Transfer, 1980, 23(8): 1127-1136.
文章导航

/