考虑安全飞行通道约束的无人机飞行轨迹多目标优化策略
收稿日期: 2021-05-06
网络出版日期: 2022-08-26
Multi-Objective Optimization Strategy of Trajectory Planning for Unmanned Aerial Vehicles Considering Constraints of Safe Flight Corridors
Received date: 2021-05-06
Online published: 2022-08-26
针对无人机在复杂环境下难以规划出兼顾平滑性和安全性等指标的时域连续轨迹问题,基于安全飞行通道提出了一种多目标轨迹规划算法.在基于快速拓展随机树(RRT)改进的RRT*算法生成的初始离散路径点基础上,建立以凸多面体集合表示的安全飞行通道;根据轨迹在安全飞行通道内部的约束建立安全项目标函数,结合飞行平滑性、动力学特性、飞行时间等性能指标,建立加权多目标优化函数;采用基于梯度下降的凸优化算法,对离散路径点的位置、速度、加速度及轨迹的时间分配进行优化,生成分段多项式表示的时域连续轨迹.基于煤矿井下等复杂环境对算法的有效性及相关性能进行试验及对比验证,结果表明:相比现有算法,本文算法在综合性能上有一定的提升.
黄宇昊, 韩超, 赵明辉, 杜乾坤, 王石刚 . 考虑安全飞行通道约束的无人机飞行轨迹多目标优化策略[J]. 上海交通大学学报, 2022 , 56(8) : 1024 -1033 . DOI: 10.16183/j.cnki.jsjtu.2021.154
Aimed at the problem of generating a smooth, safe, and dynamically feasible continuous-time trajectory for unmanned aerial vehicles (UAV) in complex environments, a trajectory planning algorithm is proposed to minimize a multi-objective function based on safe flight corridors. The safe flight corridor represented by a collection of convex polyhedra is built based on the initial discrete waypoints generated by the improved rapidly-exploring random tree(RRT), namely the RRT* algorithm. The safety objective function is established according to the constraints of limiting the trajectory inside safe flight corridors. In combination with the flight smoothness, dynamic characteristics, and time performance, a multi-objective function is built. The gradient-based convex optimization algorithm is used to derive the continuous-time trajectory expressed as a piece-wise polynomial by optimizing the position, velocity, acceleration of waypoints, and time allocation. The effectiveness and performance of the proposed algorithm is tested and compared under complex environments such as the coal mine. The test results demonstrate that the proposed algorithm has a better comprehensive performance in comparison with existing algorithms.
[1] | ZHOU Y, RUI T, LI Y R, et al. A UAV patrol system using panoramic stitching and object detection[J]. Computers & Electrical Engineering, 2019, 80: 106473. |
[2] | MANSOURI S S, KANELLAKIS C, KOMINIAK D, et al. Deploying MAVs for autonomous navigation in dark underground mine environments[J]. Robotics and Autonomous Systems, 2020, 126: 103472. |
[3] | 赵建霞, 段海滨, 赵彦杰, 等. 基于鸽群层级交互的有人/无人机集群一致性控制[J]. 上海交通大学学报, 2020, 54(9): 973-980. |
[3] | ZHAO Jianxia, DUAN Haibin, ZHAO Yanjie, et al. Consensus control of manned-unmanned aerial vehicle swarm based on hierarchy interaction of pigeons[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 973-980. |
[4] | CHANDLER B, GOODRICH M A. Online RRT and online FMT: Rapid replanning with dynamic cost[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017: 6313-6318. |
[5] | CAI Y Z, XI Q B, XING X J, et al. Path planning for UAV tracking target based on improved A-star algorithm[C]// 2019 1st International Conference on Industrial Artificial Intelligence. Shenyang, China: IEEE, 2019: 1-6. |
[6] | 郝钏钏, 方舟, 李平. 基于Q学习的无人机三维航迹规划算法[J]. 上海交通大学学报, 2012, 46(12): 1931-1935. |
[6] | HAO Chuanchuan, FANG Zhou, LI Ping. A 3-D route planning algorithm for unmanned aerial vehicle based on Q-learning[J]. Journal of Shanghai Jiao Tong University, 2012, 46(12): 1931-1935. |
[7] | CHEN J, LIU T B, SHEN S J. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]// 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 1476-1483. |
[8] | LIU S K, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695. |
[9] | STOICAN F, PRODAN I, POPESCU D, et al. Constrained trajectory generation for UAV systems using a B-spline parametrization[C]// 2017 25th Mediterranean Conference on Control and Automation. Valletta, Malta: IEEE, 2017: 613-618. |
[10] | SATAI H A, ZAHRA M M A, RASOOL Z I, et al. Bézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithms[J]. Sensors, 2021, 21(7): 2460. |
[11] | RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]. New York, NY, USA: Springer, 2016: 649-666. |
[12] | INGERSOLL B T, INGERSOLL J K, DEFRANCO P, et al. UAV path-planning using bezier curves and a receding horizon approach[C]// AIAA Modeling and Simulation Technologies Conference. Reston, Virginia: AIAA, 2016: 3675. |
[13] | LOPEZ B T, HOW J P. Aggressive 3-D collision avoidance for high-speed navigation[C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5759-5765. |
[14] | MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]// 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2520-2525. |
[15] | OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV replanning[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016: 5332-5339. |
[16] | GAO F, LIN Y, SHEN S J. Gradient-based online safe trajectory generation for quadrotor flight in complex environments[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canda: IEEE, 2017: 3681-3688. |
[17] | HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3): 189-206. |
[18] | SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573. |
/
〈 |
|
〉 |