新型电力系统与综合能源

基于多源局部放电信号数据流聚类分离方法

展开
  • 1.重庆邮电大学 通信与信息工程学院,重庆 400065
    2.广州友智电气技术有限公司,广州 510260
陈昌川(1978-),男,四川省广安市人,副教授,从事智能信息处理、图像人工智能处理、特高频局放检测、红外成像与测温研究。电话(Tel.):13350370998;E-mail: creditdegree@gmail.com.

收稿日期: 2021-06-08

  网络出版日期: 2022-08-26

基金资助

国家自然科学基金面上项目(61671095);重庆市研究生教育教学改革研究重点项目(yjg192019);重庆市研究生教育教学改革研究一般项目(yjg213079);校企合作项目“电力设备局放在线监测系统装置”(SET20190627002)

Clustering Separation Method Based on Multi-Source Partial Discharge Signal Data Stream

Expand
  • 1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. Guangzhou Youzhi Electric Technology Co., Ltd., Guangzhou 510260, China

Received date: 2021-06-08

  Online published: 2022-08-26

摘要

局部放电检测中, 多种放电源与现场干扰源同时存在且不断变化,导致多种局部放电源难以有效分离及识别.提出一种高效自适应在线数据流(EAOStream)聚类算法,该算法采用自然邻域创建K-dimensional树来提高查询近邻的效率,即通过流数据的特征得到自适应的邻域半径和区域密度,从而能够局部搜索并形成团簇,实现多种局部放电源的实时在线分离.在人工数据集和真实数据集验证了EAOStream的优越性,通过与传统的DenStream和SE-Stream算法比较,将其应用于气体绝缘变电站故障的模式识别.实验测试结果表明:EAOStream在真实的网络入侵检测、森林覆盖类型及多源局部放电信号数据集的聚类准确度分别达到95.28%、98.47%及97.23%,验证了该算法在气体绝缘变电站故障诊断方面的实用性和有效性.

本文引用格式

陈昌川, 刘凯, 刘仁光, 冯晓棕, 覃延佳, 代少升, 张天骐 . 基于多源局部放电信号数据流聚类分离方法[J]. 上海交通大学学报, 2022 , 56(8) : 1014 -1023 . DOI: 10.16183/j.cnki.jsjtu.2021.195

Abstract

In partial discharge(PD) detection, due to the simultaneous and constantly changing phenomenon of multiple discharge sources and on-site interference sources, it is difficult to effectively separate and identify multiple PD sources. An efficient adaptive efficient adaptive online data stream clustering algorithm (EAOStream) is proposed. The algorithm uses natural neighborhoods to create K-dimensional (KD) trees to improve the efficiency of querying neighbors. That is, the adaptive neighborhood radius and the area density are obtained through the characteristics of the flow data, which can search locally and form clusters, and realize the real-time online separation of multiple local discharge sources. The superiority of EAOStream is verified in the artificial data set and the real data set. After comparing EAOStream with the traditional DenStream and SE-Stream algorithms, it is applied to the pattern recognition of gas-insulated substation faults. Experimental test results show that the clustering accuracy of EAOStream in the real network intrusion detection, the forest cover type, and the multi-source PD signal data sets reaches 95.28%, 98.47%, and 97.23%, verifying the practicability and effectiveness of the algorithm in fault diagnosis of gas-insulated substations.

参考文献

[1] LI G Y, WANG X H, LI X, et al. Partial discharge recognition with a multi-resolution convolutional neural network[J]. Sensors, 2018, 18(10): 1-27.
[2] 段韶峰, 李志兵, 詹花茂, 等.252 kV GIS中特快速瞬态过电压和特快速瞬态电流特性试验研究[J]. 电网技术, 2015, 39(7): 2046-2051.
[2] DUAN Shaofeng, LI Zhibing, ZHAN Huamao, et al. Experimental study on the characteristics of VFTO and VFTC in 252 kV GIS[J]. Power System Technology, 2015, 39(7): 2046-2051.
[3] 周承科, 李明贞, 王航, 等. 电力电缆资产的状态评估与运维决策综述[J]. 高电压技术, 2016, 42(8): 2353-2362.
[3] ZHOU Chengke, LI Mingzhen, WANG Hang, et al. Review of condition assessment and maintenance strategy of power cable assets[J]. High Voltage Engineering, 2016, 42(8): 2353-2362.
[4] ZHU M X, XUE J Y, ZHANG J N, et al. Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique[J]. IET Science, Measurement & Technology, 2016, 10(4): 316-326.
[5] 卢启付, 李端姣, 唐志国, 等. 局部放电特高频检测技术[M]. 北京: 中国电力出版社, 2017.
[5] LU Qifu, LI Duanjiao, TANG Zhiguo, et al. Partial discharge ultra-high frequency detection technology[M]. Beijing: China Electric Power Press, 2017.
[6] 郭俊, 吴广宁, 张血琴, 等. 局部放电检测技术的现状和发展[J]. 电工技术学报, 2005, 20(2): 29-35.
[6] GUO Jun, WU Guangning, ZHANG Xueqin, et al. The actuality and perspective of partial discharge detection techniques[J]. Transactions of China Electrotechnical Society, 2005, 20(2): 29-35.
[7] BELTLE M, MULLER A, TENBOHLEN S. Statistical analysis of online ultrahigh-frequency partial-discharge measurement of power transformers[J]. IEEE Electrical Insulation Magazine, 2012, 28(6): 17-22.
[8] 张广东, 秦睿, 张忠元, 等. 基于超高频特高频法的GIS局部放电特征图谱提取与研究[J]. 高压电器, 2016, 52(9): 71-77.
[8] ZHANG Guangdong, QIN Rui, ZHANG Zhongyuan, et al. Extraction and analysis of characteristic spectrum of partial discharge in GIS based on UHF method[J]. High Voltage Apparatus, 2016, 52(9): 71-77.
[9] 代少升, 杨雨, 聂合文, 等. UHF局部放电信号包络检波电路设计与实现[J]. 重庆邮电大学学报(自然科学版), 2021, 33(5): 736-742.
[9] DAI Shaosheng, YANG Yu, NIE Hewen, et al. UHF partial discharge signal envelope detection circuit design and implementation[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition): 2021, 33(5): 736-742.
[10] TAREQ M, SUNDARARAJAN E A, MOHD M, et al. Online clustering of evolving data streams using a density grid-based method[J]. IEEE Access, 2020, 8: 166472-166490.
[11] PUTRI G H, READ M N, KOPRINSKA I, et al. ChronoClust: Density-based clustering and cluster tracking in high-dimensional time-series data[J]. Knowledge-Based Systems, 2019, 174: 9-26.
[12] ISLAM M K, AHMED M M, ZAMLI K Z. A buffer-based online clustering for evolving data stream[J]. Information Sciences, 2019, 489: 113-135.
[13] 郑祺, 黄德才. 基于引力相似度和相对密度的不确定数据流聚类[J]. 上海交通大学学报, 2016, 50(6): 873-878.
[13] ZHENG Qi, HUANG Decai. Uncertain data stream clustering algorithm based on gravity similarity and relative density techniques[J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 873-878.
[14] XU J, WANG G Y, LI T R, et al. Fat node leading tree for data stream clustering with density peaks[J]. Knowledge-Based Systems, 2017, 120: 99-117.
[15] 龙真真, 张策, 王维平, 等. 一种基于数据流聚类的动态目标分群框架[J]. 上海交通大学学报, 2010, 44(7): 921-925.
[15] LONG Zhenzhen, ZHANG Ce, WANG Weiping, et al. A dynamic framework for target-grouping based on clustering data streams[J]. Journal of Shanghai Jiao Tong University, 2010, 44(7): 921-925.
[16] HAHSLER M, BOLAÑOS M. Clustering data streams based on shared density between micro-clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(6): 1449-1461.
[17] 于晓飞, 葛洪伟. 噪声环境下复杂流形数据的势能层次聚类算法[J]. 重庆邮电大学学报(自然科学版), 2018, 30(6): 848-854.
[17] YU Xiaofei, GE Hongwei. A hierarchical clustering algorithm of potential energy for complex manifold data in noisy environment[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(6): 848-854.
[18] CAO F, ESTERT M, QIAN W N, et al. Density-based clustering over an evolving data stream with noise[C]// Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2006: 328-339.
[19] CHAIRUKWATTANA R, KANGKACHIT T, RAKTHANMANON T, et al. Efficient evolution-based clustering of high dimensional data streams with dimension projection[C]// 2013 International Computer Science and Engineering Conference. Nakhonpathom, Thailand: IEEE, 2013: 185-190.
[20] LIAO R J, YANG L J, LI J, et al. Aging condition assessment of transformer oil-paper insulation model based on partial discharge analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 303-311.
[21] SAKO H, MIO K, OKADA S. Analysis of Phase Resolved Partial Discharge patterns with microstrip antenna[C]// 2015 IEEE Electrical Insulation Conference. Seattle, WA, USA: IEEE, 2015: 346-357.
[22] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.
文章导航

/