基于集成学习的电动汽车充电站超短期负荷预测
收稿日期: 2021-11-30
网络出版日期: 2022-08-26
基金资助
国家自然科学基金项目(52167014);教育部产学合作协同育人项目(202002010028);上海市科委技术标准项目(21DZ2204800);国家电网有限公司科技项目(52094021000F)
Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning
Received date: 2021-11-30
Online published: 2022-08-26
精确的电动汽车充电站充电负荷预测是提高充电站安全经济运行的重要措施,也是支撑充电基础设施新建、扩容规划决策的重要基础.为提高电动汽车充电站超短期充电负荷预测的精度,提出一种基于集成学习的充电站超短期充电负荷预测方法.首先,以预测精确度与响应速度为主要目标,使用轻量级梯度提升框架构建基础回归器模型;其次,通过自适应提升方法对基础回归器群进行集成;最后,通过超参数调整与优化,建立基于能量集成轻量梯度提升框架(EEB-LGBM)的双层充电站超短期充电负荷预测模型.算例结果表明,相较于反向传播神经网络、卷积神经长短期记忆网络、差分自回归移动平均模型等预测模型,所提出的基于EEB-LGBM的超短期充电负荷预测模型具有更高的精确度,同时可以大幅度缩短训练时间和降低计算资源需求.
李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云 . 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022 , 56(8) : 1004 -1013 . DOI: 10.16183/j.cnki.jsjtu.2021.486
Accurate electric vehicle load forecasting is the basis for maintaining the safe and economical operation of charging stations, and for supporting the planning and decision-making of new and expanded charging infrastructure. In order to improve the accuracy of the ultra-short-term load forecasting of charging stations, an ultra-short-term load forecasting method based on ensemble learning is proposed. First, aimed at the prediction accuracy and the response speed, the light gradient boosting machine (LightGBM) framework is utilized to build several basic regressors. Next, the basic regressors are integrated by using the adaptive boosting (Adaboost) method. Finally, by using hyperparameter adjustment and optimization, a dual-system for ultra-short-term load forecasting of charging stations named energy ensemble boosting-light gradient boosting machine (EEB-LGBM) is generated. The analysis of the numerical examples shows that the proposed model has a higher accuracy than the back propagation neural network (BPNN), convolutional neural networks-long short term memory (CNN-LSTM), autoregressive integrated moving average (ARIMA), and other load forecasting methods, which can greatly reduce the training time and the computing power requirements of the training platform.
[1] | 陈文彬, 徐大勇, 郭瑞鹏. 负荷预测对新能源电网多目标优化调度的影响规律研究[J]. 电力系统保护与控制, 2020, 48(10): 46-51. |
[1] | CHEN Wenbin, XU Dayong, GUO Ruipeng. A study on the influence rule of load forecasting on multi-objective optimal dispatching of a new-energy grid[J]. Power System Protection and Control, 2020, 48(10): 46-51. |
[2] | 孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2898. |
[2] | SUN Chao, LÜ Qi, ZHU Sitong, et al. Ultra-short-term power load forecasting based on two-layer XGBoost algorithm considering the influence of multiple features[J]. High Voltage Engineering, 2021, 47(8): 2885-2898. |
[3] | 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7): 2719-2730. |
[3] | LI Yuzhi, LIU Xiaoliang, XING Fangfang, et al. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7): 2719-2730. |
[4] | 罗凤章, 张旭, 杨欣, 等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术, 2021, 47(1): 23-32. |
[4] | LUO Fengzhang, ZHANG Xu, YANG Xin, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32. |
[5] | 谭嘉, 李知艺, 杨欢, 等. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553. |
[5] | TAN Jia, LI Zhiyi, YANG Huan, et al. A multi-level collaborative load forecasting method for distribution networks based on distributed optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. |
[6] | 钟光耀, 邰能灵, 黄文焘, 等. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
[6] | ZHONG Guangyao, TAI Nengling, HUANG Wentao, et al. Attention short-term forecasting method of distribution load based on multi-dimensional clustering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1532-1543. |
[7] | 林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45(11): 52-60. |
[7] | LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45(11): 52-60. |
[8] | 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14): 4858-4867. |
[8] | XIAO Bai, XIAO Zhifeng, JIANG Zhuo, et al. Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long short-term memory neural networks[J]. Proceedings of the CSEE, 2021, 41(14): 4858-4867. |
[9] | 范士雄, 刘幸蔚, 於益军, 等. 基于多源数据和模型融合的超短期母线负荷预测方法[J]. 电网技术, 2021, 45(1): 243-250. |
[9] | FAN Shixiong, LIU Xingwei, YU Yijun, et al. Multi-source data and hybrid neural network based ultra-short-term bus load forecasting[J]. Power System Technology, 2021, 45(1): 243-250. |
[10] | 张金金, 张倩, 马愿, 等. 基于改进的随机森林和密度聚类的短期负荷频域预测方法[J]. 控制理论与应用, 2020, 37(10): 2257-2265. |
[10] | ZHANG Jinjin, ZHANG Qian, MA Yuan, et al. Short-term load frequency domain prediction method based on improved random forest and density-based spatial clustering of applications with noise[J]. Control Theory & Applications, 2020, 37(10): 2257-2265. |
[11] | 罗平, 程晟, 王严, 等. 考虑用户出行特性的电动汽车充电负荷预测[J]. 华中科技大学学报(自然科学版), 2020, 48(11): 126-132. |
[11] | LUO Ping, CHENG Sheng, WANG Yan, et al. Electric vehicle charging load forecast considering user's travel characteristics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(11): 126-132. |
[12] | MA X J, SHA J L, WANG D H, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31: 24-39. |
[13] | SHAKER B, YU M S, SONG J S, et al. LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM[J]. Bioinformatics, 2020, 37(8): 1135-1139. |
[14] | WANG Y Y, CHEN J, CHEN X Q, et al. Short-term load forecasting for industrial customers based on TCN-LightGBM[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1984-1997. |
[15] | KE G, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154. |
[16] | MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: A fast scalable classifier for data mining[C]// Advances in Database Technology - EDBT '96. Avignon, France: Springer, 1996: 18-32. |
[17] | ZHOU Z H. Ensemble Methods[M]. New York, USA: Chapman and Hall (CRC Press), 2012. |
[18] | REDDY L N, BUTAKOV S, ZAVARSKY P. Applying ML algorithms to improve traffic classification in intrusion detection systems[C]// 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing. Beijing, China: IEEE, 2020: 1-6. |
[19] | COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15-18. |
[20] | LING R F. Residuals and influence in regression[J]. Technometrics, 2012, 26(4): 413-415. |
[21] | 李汉巨. 考虑气象因素累积效应的电力系统96点日负荷预测方法[J]. 电气技术, 2018, 19(4): 28-32. |
[21] | LI Hanju. The 96 point daily load forecasting method for power system considering the cumulative effect of meteorological factors[J]. Electrical Engineering, 2018, 19(4): 28-32. |
[22] | CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623. |
[23] | BECTA. Elaadnl[EB/OL]. (2020-01-15)[2021-08-23]. https://platform.elaad.io/. |
/
〈 |
|
〉 |