交通运输工程

地面堆载对既有隧道影响离心试验和数值分析

展开
  • 1.上海交通大学 土木工程系,上海 200240
    2.国网浙江省电力有限公司 经济技术研究院, 杭州 310012
    3.中国电力科学研究院有限公司,北京 102401
刘谨豪(1995-),男,山东省日照市人,硕士生,从事岩土工程研究.

收稿日期: 2020-12-01

  网络出版日期: 2022-08-16

基金资助

国家自然科学基金(42072317);国网浙江省电力有限公司科技项目(SGZJJY00SJJS1900122)

Centrifugal Test and Numerical Analysis of Impact of Surface Surcharge on Existing Tunnels

Expand
  • 1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Economic and Technological Research Institute, State Grid Zhejiang Electric Power Company, Hangzhou 310012, China
    3. China Electric Power Research Institute, Beijing 102401, China

Received date: 2020-12-01

  Online published: 2022-08-16

摘要

地面堆载对地下既有隧道的安全稳定影响显著,软黏土地区相关规范对堆载引起的隧道位移限制十分严格.为了准确评估软黏土地区地面堆载对隧道位移的影响,首先通过离心模型试验研究了地面堆载对隧道位移和土体变形的影响规律,然后基于离心模型试验建立了相应的有限元模型,通过室内土工试验确定了土体本构模型的参数取值,从土体应变和剪切刚度等方面对比分析了HS模型和HSS模型在研究软黏土地层地面堆载问题中的适用性.在此基础上,综合考虑堆载规模和隧道位置等参数,进一步探讨了地面堆载对软黏土地层变形和隧道位移的影响,相关研究成果可以为工程设计提供参考.

本文引用格式

刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林 . 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022 , 56(7) : 886 -896 . DOI: 10.16183/j.cnki.jsjtu.2020.412

Abstract

Surface surcharge has a significant impact on the safety and stability of existing underground tunnels, and relevant regulations in soft clay areas have very strict restrictions on the tunnel displacement caused by surface surcharge. In order to accurately assess the impact of surface surcharge on the tunnel displacement in soft clay areas, the influence of surface surcharge on tunnel displacement and soil deformation is studied by using the centrifugal model test, and a corresponding finite element model is established based on the centrifugal model test. The parameter values of the soil constitutive model are determined by indoor soil tests. From the aspects of soil strain and shear stiffness, the applicability of the HS model and the HSS model in the analysis of the soft clay surface surcharge problem is compared and analyzed. Based on the result, the influence of surface surcharge on the deformation of soft clay formation and tunnel displacement is further discussed while comprehensively considering the size of the surface surcharge and the location of the tunnel. The results can provide some reference for engineering design.

参考文献

[1] SHIAU J, AL-ASADI F. Three-dimensional analysis of circular tunnel headings using broms and bennermark’s original stability number[J]. International Journal of Geomechanics, 2020, 20(7): 06020015.
[2] YANG F, SUN X L, ZOU J H, et al. Analysis of an elliptical tunnel affected by surcharge loading[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2019, 172(4): 312-319.
[3] TIWARI B, YE G L, LI M G, et al. Strength and dilatancy behaviors of deep sands in Shanghai with a focus on grain size and shape effect[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1214-1225.
[4] 刘庭金, 陈思威, 叶振威. 堆载诱发盾构隧道病害及结构安全分析[J]. 铁道工程学报, 2019, 36(11): 67-73.
[4] LIU Tingjin, CHEN Siwei, YE Zhenwei. Analysis of disease and structural safety of shield tunnel under accidental surface surcharge[J]. Journal of Railway Engineering Society, 2019, 36(11): 67-73.
[5] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.
[5] SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043.
[6] 李卫超, 朱碧堂, 张俊峰, 等. 物流仓库大面积堆载危害及规范法预测沉降问题讨论[J]. 建筑结构学报, 2021, 42(5): 187-194.
[6] LI Weichao, ZHU Bitang, ZHANG Junfeng, et al. Damage of logistics warehouses due to large area loading and discussion on settlement prediction using China technical codes[J]. Journal of Building Structures, 2021, 42(5): 187-194.
[7] WANG H N, CHEN X P, JIANG M J, et al. The analytical predictions on displacement and stress around shallow tunnels subjected to surcharge loadings[J]. Tunnelling and Underground Space Technology, 2018, 71: 403-427.
[8] 梁发云, 袁强, 李家平, 等. 堆载作用下土体分层特性对地铁隧道纵向变形的影响研究[J]. 岩土工程学报, 2020, 42(1): 63-71.
[8] LIANG Fayun, YUAN Qiang, LI Jiaping, et al. Influences of soil characteristics on longitudinal deformation of shield tunnels induced by surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 63-71.
[9] 黄大维, 周顺华, 赖国泉, 等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173-1181.
[9] HUANG Dawei, ZHOU Shunhua, LAI Guoquan, et al. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173-1181.
[10] 张明告, 周顺华, 黄大维, 等. 地表超载对地铁盾构隧道的影响分析[J]. 岩土力学, 2016, 37(8): 2271-2278.
[10] ZHANG Minggao, ZHOU Shunhua, HUANG Dawei, et al. Analysis of influence of surface surcharge on subway shield tunnel under[J]. Rock and Soil Mechanics, 2016, 37(8): 2271-2278.
[11] ALI A, LYAMIN A V, HUANG J S, et al. Undrained stability of a single circular tunnel in spatially variable soil subjected to surcharge loading[J]. Computers and Geotechnics, 2017, 84: 16-27.
[12] DE A, NIEMIEC A, ZIMMIE T F. Pore-pressure development near tunnel due to underwater explosion from centrifuge tests[J]. International Journal of Physical Modelling in Geotechnics, 2021, 21(5): 234-250.
[13] BAZIAR M H, NABIZADEH A, KHALAFIAN N, et al. Evaluation of reverse faulting effects on the mechanical response of tunnel lining using centrifuge tests and numerical analysis[J]. Géotechnique, 2020, 70(6): 490-502.
[14] 李青, 徐中华, 王卫东, 等. 上海典型黏土小应变剪切模量现场和室内试验研究[J]. 岩土力学, 2016, 37(11): 3263-3269.
[14] LI Qing, XU Zhonghua, WANG Weidong, et al. Field and laboratory measurements on shear modulus of typical Shanghai clay at small strain[J]. Rock and Soil Mechanics, 2016, 37(11): 3263-3269.
[15] 于亚磊, 叶冠林, 熊永林. 上海第4层黏土力学特性的弹塑性本构模拟[J]. 岩土力学, 2016, 37(9): 2541-2546.
[15] YU Yalei, YE Guanlin, XIONG Yonglin. Elastoplastic constitutive modelling for mechanical behavior of Shanghai 4th layer clay[J]. Rock and Soil Mechanics, 2016, 37(9): 2541-2546.
[16] 杨同帅, 叶冠林, 顾琳琳. 上海软土小应变三轴试验及本构模拟[J]. 岩土工程学报, 2018, 40(10): 1930-1935.
[16] YANG Tongshuai, YE Guanlin, GU Linlin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1930-1935.
[17] 付亚雄, 贺雷, 马险峰, 等. 软黏土地层盾构隧道开挖面稳定性离心试验研究[J]. 地下空间与工程学报, 2019, 15(2): 387-393.
[17] FU Yaxiong, HE Lei, MA Xianfeng, et al. Centrifuge model tests on face stability of shield tunneling in soft clay[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 387-393.
[18] WANG Z T, ZHANG Y, YU L, et al. Centrifuge modelling of active pipeline-soil loading under different impact angle in soft clay[J]. Applied Ocean Research, 2020, 98: 102129.
[19] MOUSSAEI N, KHOSRAVI M H, HOSSAINI M F. Physical modeling of tunnel induced displacement in sandy grounds[J]. Tunnelling and Underground Space Technology, 2019, 90: 19-27.
[20] YE G L, YE B. Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling[J]. Underground Space, 2016, 1(1): 62-77.
[21] 王建华, 张璐璐, 陈锦剑. 土力学与地基基础[M]. 北京: 中国建筑工业出版社, 2011.
[21] WANG Jianhua, ZHANG Lulu, CHEN Jinjian. Soil mechanics and foundations[M]. Beijing: China Architecture & Building Press, 2011.
[22] DEHGHANBANADAKI A, MOTAMEDI S, AHMAD K. FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns[J]. Geomechanics and Engineering, 2020, 20(1): 75-86.
[23] LU K K, YIN J H, LO S C. Modeling small-strain behavior of Hong Kong CDG and its application to finite-element study of basement-raft footing[J]. International Journal of Geomechanics, 2018, 18(9): 04018104.
[24] 陈超斌, 叶冠林. 基于LVDT的小应变三轴仪研制及其软土试验应用[J]. 岩土力学, 2018, 39(6): 2304-2310.
[24] CHEN Chaobin, YE Guanlin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test[J]. Rock and Soil Mechanics, 2018, 39(6): 2304-2310.
[25] CHOO H, VAN NGO L, KIM T, et al. Compression index and small strain stiffness of six coal bottom ashes in south Korea[J]. KSCE Journal of Civil Engineering, 2020, 24(12): 3584-3593.
[26] SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Géotechnique, 2021, 71(4): 305-319.
[27] 王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1774.
[27] WANG Weidong, WANG Haoran, XU Zhonghua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 2013, 34(6): 1766-1774.
文章导航

/