电子信息与电气工程

基于扰动块的柔性臂分布式滚动时域估计

展开
  • 浙江工业大学 信息工程学院, 杭州 310023
徐晨辉(1996-),男,浙江省宁波市人,博士生,研究方向为鲁棒滚动时域估计.

收稿日期: 2021-06-02

  网络出版日期: 2022-08-16

基金资助

国家自然科学基金(61773345);浙江省高校基本科研业务费项目(RF-C2020003)

Disturbance-Blocking-Based Distributed Receding Horizon Estimation of Flexible Joint Robots

Expand
  • College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 2021-06-02

  Online published: 2022-08-16

摘要

针对柔性机械臂因在实际运动过程中易发生变形而需进行状态监测的问题,提出一种基于扰动块的分布式滚动时域估计算法.在分布式一致性滚动时域估计的基础上,通过设计扰动块并将其应用于估计窗口内的过程扰动序列,减少了与优化相关的变量,从而降低了算法的计算量,实现快速性.通过分析算法在最大分块长度下的可行性与收敛性,建立了保证算法的优化问题存在等价解的假设条件,并将结果推广到了过程扰动任意分块的情况.仿真结果表明:与不加扰动块的算法相比,所提算法能在不影响估计误差的前提下有效缩短计算时间.

本文引用格式

徐晨辉, 俞芳慧, 何德峰 . 基于扰动块的柔性臂分布式滚动时域估计[J]. 上海交通大学学报, 2022 , 56(7) : 868 -876 . DOI: 10.16183/j.cnki.jsjtu.2021.186

Abstract

Considering the state monitoring problem of flexible joint robots (FJRs) caused by the easy deformation in practice, a distributed receding horizon estimation algorithm based on disturbance blocks is proposed. Based on distributed consistent receding horizon estimation, the proposed algorithm reduces the computational amount and achieves rapidity by designing the disturbance block and applying it to the process disturbance sequence in the estimation window to reduce the variables related to optimization. By analyzing the feasibility and convergence of the proposed algorithm based on the maximum block length, the assumptions are made under which the existence of equivalent solution to the optimization problem of the algorithm is guaranteed, and the results are extended to the case that the process disturbance can be divided into arbitrary blocks. The simulation results show that the proposed algorithm can effectively shorten the computation time without affecting the estimation error compared with the algorithm without disturbance blocks.

参考文献

[1] SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(4): 310-318.
[2] KIM M J, BECK F, OTT C, et al. Model-free friction observers for flexible joint robots with torque measurements[J]. IEEE Transactions on Robotics, 2019, 35(6): 1508-1515.
[3] LING S, WANG H Q, LIU P X. Adaptive fuzzy tracking control of flexible-joint robots based on command filtering[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4046-4055.
[4] KIM J, CROFT E A. Full-state tracking control for flexible joint robots with singular perturbation techniques[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 63-73.
[5] LIU X, ZHAO F, GE S S, et al. End-effector force estimation for flexible-joint robots with global friction approximation using neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1730-1741.
[6] 于仕泽, 王周义, 戴振东, 等. 一种面向航天需求的仿生柔性机械臂的设计[J]. 机械制造与自动化, 2020, 49(1): 134-137.
[6] YU Shize, WANG Zhouyi, DAI Zhendong, et al. Design of bionic flexible arm in aerospace demand[J]. Machine Building & Automation, 2020, 49(1): 134-137.
[7] ZOU S Z, PAN B, FU Y L, et al. Extended high-gain observer based adaptive control of flexible-joint surgical robot[C]∥2016 IEEE International Conference on Robotics and Biomimetics. Qingdao, China: IEEE, 2016: 2128-2133.
[8] 陈晓云. 车载柔性机械臂系统轨迹跟踪补偿控制研究[J]. 自动化与仪器仪表, 2016(6): 90-91.
[8] CHEN Xiaoyun. On-board flexible manipulator system trajectory tracking compensation control research[J]. Automation & Instrumentation, 2016(6): 90-91.
[9] KIM M J, CHUNG W K. Disturbance-observer-based PD control of flexible joint robots for asymptotic convergence[J]. IEEE Transactions on Robotics, 2015, 31(6): 1508-1516.
[10] LIU X, YANG C G, CHEN Z G, et al. Neuro-adaptive observer based control of flexible joint robot[J]. Neurocomputing, 2018, 275: 73-82.
[11] KIM M J, BECK F, OTT C, et al. Model-free friction observers for flexible joint robots with torque measurements[J]. IEEE Transactions on Robotics, 2019, 35(6): 1508-1515.
[12] ZOU L, WANG Z D, HAN Q L, et al. Moving horizon estimation for networked time-delay systems under round-robin protocol[J]. IEEE Transactions on Automatic Control, 2019, 64(12): 5191-5198.
[13] LIU A D, ZHANG W A, CHEN M Z Q, et al. Moving horizon estimation for mobile robots with multirate sampling[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1457-1467.
[14] HAN C Y, LI C C, HE F, et al. Receding horizon estimation for linear discrete-time systems with multi-channel observation delays[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 478-484.
[15] XU Y, ZHOU J Y, RAO H X, et al. Reset moving horizon estimation for quantized discrete time systems[J]. IEEE Transactions on Automatic Control, 2021, 66(9): 4199-4205.
[16] 何德峰, 俞芳慧, 徐晨辉. 网联车辆协同巡航系统快速滚动时域状态估计[J]. 控制理论与应用, 2021, 38(4): 457-466.
[16] HE Defeng, YU Fanghui, XU Chenhui. Fast receding horizon state estimation of cooperative cruise systems of connected vehicles[J]. Control Theory & Applications, 2021, 38(4): 457-466.
[17] 刘帅, 赵国荣, 曾宾, 等. 带丢包和量化的参数不确定系统滚动时域估计[J]. 系统工程与电子技术, 2020, 42(4): 912-918.
[17] LIU Shuai, ZHAO Guorong, ZENG Bin, et al. Moving horizon estimation for uncertain systems with packet dropouts and quantization[J]. Systems Engineering and Electronics, 2020, 42(4): 912-918.
[18] 刘帅, 赵国荣, 曾宾, 等. 测量数据丢失的随机不确定系统滚动时域估计[J]. 控制与决策, 2021, 36(2): 450-456.
[18] LIU Shuai, ZHAO Guorong, ZENG Bin, et al. Moving horizon estimation for stochastic uncertain system with missing measurements[J]. Control and Decision, 2021, 36(2): 450-456.
[19] FARINA M, FERRARI-TRECATE G, SCATTOLINI R. Distributed moving horizon estimation for linear constrained systems[J]. IEEE Transactions on Automatic Control, 2010, 55(11): 2462-2475.
[20] BATTISTELLI G. Distributed moving-horizon estimation with arrival-cost consensus[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3316-3323.
[21] YIN X Y, LIU J F. Distributed moving horizon state estimation of two-time-scale nonlinear systems[J]. Automatica, 2017, 79: 152-161.
[22] LI H P, SHI Y, YAN W S. Distributed receding horizon estimation for sensor networks with improved consensus strategy[C]∥Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014: 316-321.
[23] VENTURINO A, BERTRAND S, MANIU C S, et al. Distributed moving horizon estimation with pre-estimating observer[C]∥2020 24th International Conference on System Theory, Control and Computing. Sinaia, Romania: IEEE, 2020: 174-179.
[24] ZENG J, LIU J F. Distributed moving horizon state estimation: Simultaneously handling communication delays and data losses[J]. Systems & Control Letters, 2015, 75: 56-68.
[25] LEE J H, CHIKKULA Y, YU Z H, et al. Improving computational efficiency of model predictive control algorithm using wavelet transformation[J]. International Journal of Control, 1995, 61(4): 859-883.
[26] CAGIENARD R, GRIEDER P, KERRIGAN E C, et al. Move blocking strategies in receding horizon control[J]. Journal of Process Control, 2007, 17(6): 563-570.
[27] SHEKHAR R C, MANZIE C. Optimal move blocking strategies for model predictive control[J]. Automatica, 2015, 61: 27-34.
[28] SON S H, OH T H, KIM J W, et al. Move blocked model predictive control with improved optimality using semi-explicit approach for applying time-varying blocking structure[J]. Journal of Process Control, 2020, 92: 50-61.
[29] JUNG T Y, JANG H, LEE J H. Move blocking strategy applied to re-entrant manufacturing line scheduling[J]. International Journal of Control, Automation and Systems, 2015, 13(2): 410-418.
文章导航

/