电子信息与电气工程

基于深度学习的智能全局灵敏度分析

展开
  • 1.上海交通大学 电子信息与电气工程学院, 上海 200240
    2.电子信息系统复杂电磁环境效应国家重点实验室, 河南 洛阳 471003
吴庶宸(1996-),男,北京市人,硕士生,主要研究方向为参数灵敏度分析.

收稿日期: 2021-07-22

  网络出版日期: 2022-08-16

基金资助

国家自然科学基金(61673265);国家重点研发计划(2020YFC1512203);民用飞机专项研究(MJ-2017-S-38);电子信息系统复杂电磁环境效应国家重点实验室基金资助项目(2019K0302A)

Intelligent Global Sensitivity Analysis Based on Deep Learning

Expand
  • 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic Information System, Luoyang 471003, Henan, China

Received date: 2021-07-22

  Online published: 2022-08-16

摘要

提出一种将深度学习与灵敏度分析结合的端到端方法, 对深度模型的结构和激活函数进行特殊设计以适应后续灵敏度的计算,深度模型训练的同时对保存的权重信息进行反向传播计算灵敏度.在波士顿房价数据集、航迹融合数据集和G函数上的实验结果表明,所提方法相比于Sobol’法等经典方法在参数分布不均匀时准确性更高, 具备更强的鲁棒性, 相比于使用传统神经网络的方法准确性更高.此外,通过实验验证了基于深度学习模型的样本参数灵敏度可以优化模型的输出结果.

本文引用格式

吴庶宸, 戚宗锋, 李建勋 . 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022 , 56(7) : 840 -849 . DOI: 10.16183/j.cnki.jsjtu.2021.191

Abstract

This paper proposes an end-to-end method that combines deep learning and sensitivity analysis, which can perform gradient back propagation calculation sensitivity on the saved weight information while training the model. The structure and activation function of the depth model are specially designed to adapt to the subsequent sensitivity calculation. The experimental results conducted on a Boston house prices dataset, a track information fusion dataset, and the G function show that the proposed method is more accurate than classical methods such as Sobol’ method when the parameter distribution is uneven, and has a stronger robustness. Compared with the traditional neural network method, the accuracy of the proposed method is higher. The experiment proves that the sample parameter sensitivity obtained by the deep learning model can be used to optimize the model output.

参考文献

[1] SALTELLI A, ALEKSANKINA K, BECKER W, et al. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[J]. Environmental Modelling and Software, 2019, 114: 29-39.
[2] ZHANG X Y, TRAME M, LESKO L, et al. Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models[J]. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4(2): 69-79.
[3] 周云峰, 周永潮, 郑春华, 等. 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报(工学版), 2019, 53(2): 347-354.
[3] ZHOU Yunfeng, ZHOU Yongchao, ZHENG Chunhua, et al. Sensitivity analysis of parameters of storm water management model with Sobol method[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 347-354.
[4] 王丰华, 王劭菁, 苏磊, 等. 采用Sobol’算法分析变电站接地网关键参数的灵敏度[J]. 高电压技术, 2017, 43(1): 300-306.
[4] WANG Fenghua, WANG Shaojing, SU Lei, et al. Sensitivity analysis of substation grounding grid parameters based on Sobol’ method[J]. High Voltage Engineering, 2017, 43(1): 300-306.
[5] 何琨, 严正, 徐潇源, 等. 基于Sobol’法的孤岛微电网潮流全局灵敏度分析[J]. 电力系统自动化, 2018, 42(14): 99-106.
[5] HE Kun, YAN Zheng, XU Xiaoyuan, et al. Sobol’ method based global sensitivity analysis of power flow in islanded microgrid[J]. Automation of Electric Power Systems, 2018, 42(14): 99-106.
[6] TANG Y, REED P, WAGENER T, et al. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation[J]. Hydrology and Earth System Sciences, 2007, 11(2): 793-817.
[7] ROSOLEM R, GUPTA H V, SHUTTLEWORTH W J, et al. A fully multiple-criteria implementation of the Sobol’ method for parameter sensitivity analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: 1-18.
[8] KHORASHADI ZADEH F, NOSSENT J, SARRAZIN F, et al. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model[J]. Environmental Modelling and Software, 2017, 91: 210-222.
[9] CUKIER R I, LEVINE H B, SHULER K E. Nonlinear sensitivity analysis of multiparameter model systems[J]. Journal of Computational Physics, 1978, 26(1): 1-42.
[10] TARANTOLA S, GATELLI D, MARA T A. Random balance designs for the estimation of first order global sensitivity indices[J]. Reliability Engineering and System Safety, 2006, 91(6): 717-727.
[11] TISSOT J Y, PRIEUR C. Bias correction for the estimation of sensitivity indices based on random balance designs[J]. Reliability Engineering and System Safety, 2012, 107: 205-213.
[12] NOURANI V, SAYYAH FARD M. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes[J]. Advances in Engineering Software, 2012, 47(1): 127-146.
[13] JAIN S K, NAYAK P C, SUDHEER K P. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation[J]. Hydrological Processes, 2008, 22(13): 2225-2234.
[14] SONG S F, WANG L. Modified GMDH-NN algorithm and its application for global sensitivity analysis[J]. Journal of Computational Physics, 2017, 348: 534-548.
[15] PARK M Y, HASTIE T. L1-regularization path algorithm for generalized linear models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69(4): 659-677.
[16] NOSSENT J, ELSEN P, BAUWENS W. Sobol’ sensitivity analysis of a complex environmental model[J]. Environmental Modelling and Software, 2011, 26(12): 1515-1525.
[17] HADJI I, WILDES R P. What do we understand about convolutional networks?[EB/OL].(2018-05-23)[2021-06-11]. https://arxiv.org/abs/1803.08834.
[18] LIN M, CHEN Q, YAN S. Network in network[EB/OL]. (2013-12-16) [2021-06-11]. https://arxiv.org/abs/1312.4400.
[19] BA, JIMMY LEI, JAMIE RYAN KIROS. Layer normalization[EB/OL] (2016-07-21) [2021-06-13]. https://arxiv.org/abs/1607.06450.
[20] CONFALONIERI R, BELLOCCHI G, BREGAGLIO S, et al. Comparison of sensitivity analysis techniques: A case study with the rice model WARM[J]. Ecological Modelling, 2010, 221(16): 1897-1906.
[21] BHATTACHARJEE K, PANT M, ZHANG Y D, et al. Multiple Instance Learning with Genetic Pooling for medical data analysis[J]. Pattern Recognition Letters, 2020, 133: 247-255.
[22] GRAHAM B. Fractional max-pooling[EB/OL].(2014-12-18) [2021-06-13]. https://arxiv.org/abs/1412.6071.
[23] MARREL A, IOOSS B, LAURENT B, et al. Calculations of Sobol indices for the Gaussian process metamodel[J]. Reliability Engineering and System Safety, 2009, 94(3), 742-751.
[24] ARCHER G E B, SALTELLI A, SOBOL I M. Sensitivity measures, anova-like techniques and the use of bootstrap[J]. Journal of Statistical Computation and Simulation, 1997, 58(2): 99-120.
文章导航

/