化学化工

铜氨络合物对二乙基羟胺除氧缓蚀性能的影响

展开
  • 1.中国石油化工股份有限公司西北油田分公司,乌鲁木齐 830011
    2.中国石化缝洞型油藏提高采收率重点试验室, 乌鲁木齐 830011
    3.上海交通大学 化学化工学院,上海 200240
魏晓静(1986-),女,甘肃省庆阳市人,工程师,从事腐蚀防护研究.

收稿日期: 2021-05-21

  网络出版日期: 2022-07-04

Effect of Copper-Ammonia Complex on the Oxygen Removal and Corrosion Inhibition Performance of Diethylhydroxylamine

Expand
  • 1. Northwest Oilfield Company of China Petroleum and Chemical Corporation, Urumqi 830011, China
    2. Key Laboratory for Improving Oil Recovery in Fractured and Cave Reservoir of China Petroleum and Chemical Corporation, Urumqi 830011, China
    3. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-05-21

  Online published: 2022-07-04

摘要

研究铜氨络合物对二乙基羟胺除氧效率的催化作用,及其复配物对碳钢的缓蚀保护能力.考察铜氨络合物添加量、水的pH值和温度对二乙基羟胺除氧性能的影响.除氧测试结果表明,二乙基羟胺的除氧率随着水的pH值和温度的增加而增加.添加铜氨络合物后,二乙基羟胺的除氧效果得到很大提升.铜氨络合物最佳添加质量浓度为8 mg/L.在此条件下,当水的pH≥7或水温为30~70 ℃时,二乙基羟胺的除氧率均能达到95%以上.缓蚀测试结果表明,铜氨络合物可显著提高二乙基羟胺对碳钢的防腐蚀保护能力,缓蚀率能达到96.2%,且缓蚀能力具有长效性.因此,铜氨络合物和二乙基羟胺的复配物具有很好的除氧缓蚀性能,在工业用水的除氧和工业碳钢设备的防腐蚀保护领域具有广阔的应用前景.

本文引用格式

魏晓静, 翟双岭, 石鑫, 高多龙, 闻小虎, 刘冬梅, 任天辉 . 铜氨络合物对二乙基羟胺除氧缓蚀性能的影响[J]. 上海交通大学学报, 2022 , 56(6) : 818 -826 . DOI: 10.16183/j.cnki.jsjtu.2021.171

Abstract

The catalytic effect of copper-ammonia complex on the deoxygenation efficiency of diethylhydroxylamine (DEHA) and the corrosion protection ability of the compound on carbon steel are studied. The effects of the addition of catalyst, and the pH and temperature of water on the deoxygenation performance of DEHA are investigated. The results of the deoxygenation test show that the deoxygenation rate of DEHA increases with the increase of the pH and temperature of water. The deoxygenation effect is greatly improved after the addition of catalyst. The optimal concentration of copper ammonia complex is 8 mg/L. Under these conditions, when the water pH≥7 or the water temperature is in the range of 30 ℃ and 70 ℃, the oxygen removal rate can reach more than 95%. The corrosion inhibition test results show that the copper-ammonia complex can significantly improve the corrosion protection ability of DEHA to carbon steel, and the corrosion inhibition rate can reach 96.2% with a long-term effect. Therefore, the compound has a good deoxygenation and corrosion inhibition performance, which has broad application prospects in the field of deoxygenation of industrial water and corrosion protection of industrial carbon steel equipment.

参考文献

[1] 周建军. 油田地面工程集输系统腐蚀控制技术探讨[J]. 全面腐蚀控制, 2020, 34(6): 16-17.
[1] ZHOU Jianjun. Discussion on corrosion control technology of oil field surface engineering gathering system[J]. Total Corrosion Control, 2020, 34(6): 16-17.
[2] 万胜, 李婷婷, 邓秋实, 等. 油田输气管道腐蚀失效分析[J]. 石油化工腐蚀与防护, 2018, 35(1): 49-52.
[2] WAN Sheng, LI Tingting, DENG Qiushi, et al. Corrosion failure analysis of oilfield pipeline[J]. Corrosion & Protection in Petrochemical Industry, 2018, 35(1): 49-52.
[3] 国玲玲. 除氧技术在锅炉给水中的工业应用[J]. 化工管理, 2019(26): 128-129.
[3] GUO Lingling. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry[J]. Chemical Enterprise Management, 2019(26): 128-129.
[4] SKOVHUS T L, ECKERT R B, RODRIGUES E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry[J]. Journal of Biotechnology, 2017, 256: 31-45.
[5] ZHAO Y, CHANG L M, ZHANG T, et al. Effect of the flow velocity on the corrosion behavior of UNS S41426 stainless steel in the extremely aggressive oilfield environment for the Tarim area[J]. Corrosion, 2020, 76(7): 654-665.
[6] 王树学. 关于油田注水除氧剂的研究进展[J]. 清洗世界, 2020, 36(11): 116-117.
[6] WANG Shuxue. Development in research of waterflooding deoxidant[J]. Cleaning World, 2020, 36(11): 116-117.
[7] 禹盟, 王永军, 胡昭朝, 等. 海上某油田海水系统除氧剂的筛选与应用[J]. 山东化工, 2019, 48(21): 131-132.
[7] YU Meng, WANG Yongjun, HU Zhaochao, et al. A study of oxygen scavenger for offshore oilfild[J]. Shandong Chemical Industry, 2019, 48(21): 131-132.
[8] 邵金利. 电厂疏水改造一体化除氧技术[J]. 机械工程师, 2021(5): 126-128.
[8] SHAO Jinli. Reform of power plant drainage system and integrated deaeration technology[J]. Mechanical Engineer, 2021(5): 126-128.
[9] 郭玉洁, 文泽宙, 孙海礁, 等. 除氧剂的添加对注气井油管管材腐蚀行为的影响[J]. 材料保护, 2019, 52(1): 18-21.
[9] GUO Yujie, WEN Zezhou, SUN Haijiao, et al. Effect of adding oxygen scavenger on the corrosion behavior of oil tube in gas injection wells[J]. Materials Protection, 2019, 52(1): 18-21.
[10] 张家虎. 火力发电厂锅炉化学水处理技术研究[J]. 山东工业技术, 2018(3): 195.
[10] ZHANG Jiahu. Research on chemical water treatment technology of boiler in thermal power plant[J]. Shandong Industrial Technology, 2018(3): 195.
[11] 曾庆峰, 刘富余, 赵金海. 石油石化行业锅炉进水除氧技术应用进展[J]. 石油石化节能, 2017, 7(3): 13-14.
[11] ZENG Qingfeng, LIU Fuyu, ZHAO Jinhai. Application process of deoxygenation technology for boiler water supply in petroleum and petrochemical industry[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2017, 7(3): 13-14.
[12] 马昱刚, 宋绍富. 油田抗氧缓蚀剂的复配及研究[J]. 油气田环境保护, 2020, 30(1): 17-20.
[12] MA Yugang, SONG Shaofu. A study on mixture of antioxidant corrosion inhibitor in oilfield[J]. Environmental Protection of Oil & Gas Fields, 2020, 30(1): 17-20.
[13] 田会娟. 2-巯基苯并噻唑三元复合缓蚀剂对碳钢的缓蚀作用[J]. 唐山学院学报, 2020, 33(6): 37-41.
[13] TIAN Huijuan. Corrosion inhibition of 2-mercaptobenzothiazole ternary compound inhibitor on carbon steel[J]. Journal of Tangshan University, 2020, 33(6): 37-41.
[14] 林尧炳, 郑志强. 联氨除氧技术在压水堆核电站一回路的应用研究[J]. 核科学与工程, 2019, 39(6): 954-957.
[14] LIN Yaobing, ZHENG Zhiqiang. Hydrazine deoxygenation technique in primary circuit of PWR[J]. Nuclear Science and Engineering, 2019, 39(6): 954-957.
[15] 冯清华. 二乙基羟胺研究进展[J]. 山东化工, 2014, 43(6): 52-53.
[15] FENG Qinghua. Research progress of diethyl hydroxylamine[J]. Shandong Chemical Industry, 2014, 43(6): 52-53.
[16] 魏晓静, 石鑫, 任天辉, 等. 硫酸铜对抗坏血酸除氧效率的影响研究[J]. 能源化工, 2019, 40(6): 55-58.
[16] WEI Xiaojing, SHI Xin, REN Tianhui, et al. Study on the effect of copper sulfate on the deoxygenation efficiency of ascorbic acid[J]. Energy Chemical Industry, 2019, 40(6): 55-58.
[17] KUDINOV A A, SOLODYANNIKOVA Y V, TSABILEV O V, et al. Deoxygenation of chemically purified water at thermal power plants[J]. Power Technology and Engineering, 2009, 43(2): 131-134.
[18] SHAFFER D, HEICKLEN J. Oxidation of diethylhydroxylamine in water solution at 25—80 ℃[J]. The Journal of Physical Chemistry, 1986, 90(18): 4408-4413.
文章导航

/