大型箱型梁高速GMAW三维位姿快速估计方法
收稿日期: 2020-11-06
网络出版日期: 2022-07-04
基金资助
国家自然科学基金(51575468);长株潭标志性工程计划重大标志性创新示范工程项目(2019XK2303);湘潭市科技计划项目(ZD-ZD20191007);湖南省自然科学基金(2020JJ4089);湖南省研究生科研创新项目(XDCX2019B099)
Fast 3D Pose Estimation Method for High Speed GMAW of Large Box Girders
Received date: 2020-11-06
Online published: 2022-07-04
大型箱型梁在高速熔化极气体保护焊(GMAW)过程中存在定位焊缝、装配精度低,难以通过工装严格保证工件位姿,以及焊缝三维位姿实时变化等复杂工况.基于视觉的焊缝识别方法计算量大,且均不针对存在定位焊缝的工件,难以快速获取大型箱型梁的三维位姿.对此,提出一种基于激光位移传感和点云聚类快速分割的大型箱型梁高速GMAW三维位姿快速估计方法.利用该方法,通过点云快速分割得出大型箱型梁焊缝的立板平面和平板平面,进而解算出焊缝位姿信息.对多种不同位姿的焊缝进行位姿信息估计试验,结果表明:当焊接速度为1200 mm/min时,焊缝位姿误差分别在0.25 mm和1.8° 以内;增强了大型箱型梁自动焊接对定位焊缝、装配精度低等复杂工况的鲁棒性,提升了焊接质量.
李高阳, 贾爱亭, 洪波, 李湘文, 高佳篷 . 大型箱型梁高速GMAW三维位姿快速估计方法[J]. 上海交通大学学报, 2022 , 56(6) : 794 -800 . DOI: 10.16183/j.cnki.jsjtu.2020.362
In the process of high speed gas metal arc welding (GMAW), large box girder has many complex working conditions, such as positioning weld, low assembly accuracy, difficulty in strictly ensuring the pose of workpiece through tooling, real-time change of 3D pose of weld, etc. The vision based weld recognition method has a large amount of calculation and is not aimed at the workpiece with positioning weld, making it difficult to obtain the 3D pose of large box girders quickly. Aimed at this problem, a fast 3D pose estimation method for large box girder based on laser displacement sensing and point cloud clustering was proposed. Using this method, the vertical plane and flat plane of the welding seam of large box girders were obtained by fast segmentation of point cloud. Then, the pose information of welding seam was calculated. A pose information estimation test was conducted for welds with different poses. The results show that when the welding speed is up to 1200 mm/min, the pose error of the weld is less than 0.25 mm and 1.8°respectively. The robustness of the automatic welding of large box girders to complex conditions of positioning weld and low assembly accuracy is enhanced, which greatly improves the welding quality.
[1] | LI G Y, HONG Y X, GAO J P, et al. Welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor[J]. Sensors, 2020, 20(13): 3657. |
[2] | ZOU Y B, CHEN J X, WEI X Z. Research on a real-time pose estimation method for a seam tracking system[J]. Optics and Lasers in Engineering, 2020, 127: 105947. |
[3] | XUE B C, CHANG B H, PENG G D, et al. A vision based detection method for narrow butt joints and a robotic seam tracking system[J]. Sensors, 2019, 19(5): 1144. |
[4] | GAO X D, HUANG G X, YOU D Y, et al. Magneto-optical imaging deviation model of micro-gap weld joint[J]. Journal of Manufacturing Systems, 2017, 42: 82-92. |
[5] | 乐健, 张华, 叶艳辉, 等. 基于旋转电弧传感机器人立焊焊缝的跟踪[J]. 上海交通大学学报, 2015, 49(3): 348-352. |
[5] | LE Jian, ZHANG Hua, YE Yanhui, et al. Robot tracking of vertical welding seam based on rotating arc sensor[J]. Journal of Shanghai Jiao Tong University, 2015, 49(3): 348-352. |
[6] | XIAO R Q, XU Y L, HOU Z, et al. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding[J]. Sensors and Actuators A: Physical, 2019, 297: 111533. |
[7] | XU Y L, LV N, FANG G, et al. Welding seam tracking in robotic gas metal arc welding[J]. Journal of Materials Processing Technology, 2017, 248: 18-30. |
[8] | ZOU Y B, WANG Y B, ZHOU W L, et al. Real-time seam tracking control system based on line laser visions[J]. Optics & Laser Technology, 2018, 103: 182-192. |
[9] | 万家山, 陈蕾, 吴锦华, 等. 基于KD-Tree聚类的社交用户画像建模[J]. 计算机科学, 2019, 46(Sup.1): 442-445. |
[9] | WAN Jiashan, CHEN Lei, WU Jinhua, et al. Persona based social user modeling using KD-tree[J]. Computer Science, 2019, 46(Sup.1): 442-445. |
[10] | 薛连杰, 齐臣坤, 张彪, 等. 基于3维点云欧氏聚类和RANSAC边界拟合的目标物体尺寸和方位识别[J]. 机械设计与研究, 2018, 34(5): 44-48. |
[10] | XUE Lianjie, QI Chenkun, ZHANG Biao, et al. Object size and orientation recognition based on 3D point cloud euclideam clustering and RANSAC boundary fitting[J]. Machine Design & Research, 2018, 34(5): 44-48. |
[11] | 周鹏, 程艳云. 一种改进的LOF异常点检测算法[J]. 计算机技术与发展, 2017, 27(12): 115-118. |
[11] | ZHOU Peng, CHENG Yanyun. An improved LOF outlier detection algorithm[J]. Computer Technology and Development, 2017, 27(12): 115-118. |
[12] | 郑健, 张轲, 罗志锋, 等. 基于空间直线约束的焊接机器人手眼标定[J]. 焊接学报, 2018, 39(8): 108-113. |
[12] | ZHENG Jian, ZHANG Ke, LUO Zhifeng, et al. Hand-eye calibration of welding robot based on the constraint of spatial line[J]. Transactions of the China Welding Institution, 2018, 39(8): 108-113. |
/
〈 |
|
〉 |