机械与动力工程

多层箔片超声焊接的摩擦能量耗散机理及影响因素研究

展开
  • 上海交通大学 机械与动力工程学院,上海 200240
马遵农(1993-),男,河南省焦作市人,博士生,研究方向为金属超声波焊接.

收稿日期: 2020-12-21

  网络出版日期: 2022-07-04

基金资助

国家自然科学基金资助项目(51875352)

Mechanism and Influencing Factors of Frictional Energy Dissipation in Multilayer Ultrasonic Welding

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-12-21

  Online published: 2022-07-04

摘要

在多层金属箔片的超声焊接过程中,焊头压紧金属箔片并带动其发生超声振动,各接触面摩擦生热并产生塑性变形,进而形成固相连接.各层箔片所受载荷存在差异,导致各接触面的摩擦行为和连接质量不一致,从而影响整体焊接质量.因此,需要分析焊接过程中载荷在多层金属箔片中的传递规律,揭示多界面的摩擦状态和能量耗散差异.以5层铜箔的超声焊接为研究对象,基于 Cattaneo-Mindlin 接触理论,利用Abaqus建立二维有限元仿真模型;分析不同压力载荷下各接触面的载荷分布和黏结-滑移状态转化;计算各接触面的摩擦耗散能量总量及在各接触面中的占比,并总结影响因素,给出多层金属箔片超声波焊接的理论工艺优化方法.

本文引用格式

马遵农, 张延松, 赵亦希 . 多层箔片超声焊接的摩擦能量耗散机理及影响因素研究[J]. 上海交通大学学报, 2022 , 56(6) : 772 -783 . DOI: 10.16183/j.cnki.jsjtu.2020.423

Abstract

In multilayer ultrasonic welding, the sonotrode presses on metal sheets and drives the sheets to produce ultrasonic vibration. Then, each contact interface generates heat, produces plastic deformation, and forms solid-state bonding. However, the load distributes unevenly in each sheet, which results in the uneven friction state and inconsistent welding quality. Hence, it is necessary to reveal the mechanism of frictional state and energy dissipation based on the load distribution in each sheet. A finite element model of 5-layer copper sheets is established using Abaqus and considering the Cattaneo-Mindlin contact theory. The clamping force and ultrasonic vibration in each interface is simulated. The slip-stick state of each interface is obtained and the effect of the clamping force are analyzed. The frictional energy dissipation and proportion of each interface are calculated, the influencing factors of frictional energy dissipation are summarized, and the optimization of input clamping force is discovered, which can provide theoretical guidance for the improvement of multilayer ultrasonic welding.

参考文献

[1] ZHANG C Q, ROBSON J D, CIUCA O, et al. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111-TiAl6V4 dissimilar joints[J]. Materials Characterization, 2014, 97: 83-91.
[2] ELANGOVAN S, SEMEER S, PRAKASAN K. Temperature and stress distribution in ultrasonic metal welding: An FEA-based study[J]. Journal of Materials Processing Technology, 2009, 209(3): 1143-1150.
[3] PATEL V K, BHOLE S D, CHEN D L. Improving weld strength of magnesium to aluminium dissimilar joints via tin interlayer during ultrasonic spot welding[J]. Science and Technology of Welding and Joining, 2012, 17(5): 342-347.
[4] MACWAN A, KUMAR A, CHEN D L. Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: Microstructure and mechanical properties[J]. Materials & Design, 2017, 113: 284-296.
[5] LEE S S, KIM T H, HU S J, et al. Joining technologies for automotive lithium-ion battery manufacturing: A review[C]∥Proceedings of ASME 2010 International Manufacturing Science and Engineering Conference. Erie, Pennsylvania, USA: ASME, 2011: 541-549.
[6] LEE S S, KIM T H, HU S J, et al. Analysis of weld formation in multilayer ultrasonic metal welding using high-speed images[J]. Journal of Manufacturing Science and Engineering, 2015, 137(3): 031016.
[7] KUMAR S, WU C S, PADHY G K, et al. Application of ultrasonic vibrations in welding and metal processing: A status review[J]. Journal of Manufacturing Processes, 2017, 26: 295-322.
[8] 徐超, 李东武, 陈学前, 等. 考虑法向载荷变化的微滑摩擦系统振动分析[J]. 振动与冲击, 2017, 36(13): 122-127.
[8] XU Chao, LI Dongwu, CHEN Xueqian, et al. Vibration analysis for a micro-slip frictional system considering variable normal load[J]. Journal of Vibration and Shock, 2017, 36(13): 122-127.
[9] 李一堃, 郝志明. 连接结构宏观滑移能量耗散特性研究[J]. 机械工程学报, 2018, 54(15): 125-131.
[9] LI Yikun, HAO Zhiming. Investigation on the energy dissipation properties of jointed structure during macro-slip stage[J]. Journal of Mechanical Engineering, 2018, 54(15): 125-131.
[10] 肖会芳, 孙韵韵, 陈再刚. 考虑热效应的滚滑并存线接触粗糙界面的摩擦能量耗散特性研究[J]. 振动与冲击, 2019, 38(5): 229-236.
[10] XIAO Huifang, SUN Yunyun, CHEN Zaigang. Frictional energy dissipation features of rolling-sliding coexisting line contact rough interface considering thermal effect[J]. Journal of Vibration and Shock, 2019, 38(5): 229-236.
[11] 田红亮, 余媛, 张屹, 等. 切向加载、卸载和振荡强耦合下机床螺栓结合部之摩擦能量耗散机制[J]. 振动与冲击, 2016, 35(15): 58-73.
[11] TIAN Hongliang, YU Yuan, ZHANG Yi, et al. Frictional energy loss mechanism of bolt joint interface in machine tools considering transverse loading-unloading-oscillating strong interaction[J]. Journal of Vibration and Shock, 2016, 35(15): 58-73.
[12] 郭利, 汤瑞清. 滑动摩擦中能量耗散的研究[J]. 机械设计与制造工程, 2017, 46(3): 92-95.
[12] GUO Li, TANG Ruiqing. The Study on energy dissipation in the sliding friction[J]. Machine Design and Manufacturing Engineering, 2017, 46(3): 92-95.
[13] 王小龙, 朱政强. 多层非晶合金薄带超声波焊接温度场数值模拟[J]. 热加工工艺, 2013, 42(23): 187-190.
[13] WANG Xiaolong, ZHU Zhengqiang. Numerical simulation on thermal field in ultrasonic welding of multi-layer amorphous alloy foils[J]. Hot Working Technology, 2013, 42(23): 187-190.
[14] 李欢, 曹彪, 杨景卫, 等. Cu-Al异种金属超声焊接过程模拟[J]. 焊接学报, 2017, 38(8): 5-9.
[14] LI Huan, CAO Biao, YANG Jingwei, et al. Modeling of ultrasonic metal welding of Cu-Al joints[J]. Transactions of the China Welding Institution, 2017, 38(8): 5-9.
[15] DE PATER A D, KALKER J J. The mechanics of the contact between deformable bodies[M]. Dordrecht: Springer Netherlands, 1975.
[16] CIAVARELLA M, BALDINI A, BARBER J R, et al. Reduced dependence on loading parameters in almost conforming contacts[J]. International Journal of Mechanical Sciences, 2006, 48(9): 917-925.
[17] KLARBRING A, CIAVARELLA M, BARBER J R. Shakedown in elastic contact problems with Coulomb friction[J]. International Journal of Solids and Structures, 2007, 44(25/26): 8355-8365.
[18] AHN Y J, BARBER J R. Response of frictional receding contact problems to cyclic loading[J]. International Journal of Mechanical Sciences, 2008, 50(10/11): 1519-1525.
[19] LEE D, JANG Y H, KANNATEY-ASIBU E Jr. Numerical analysis of quasistatic frictional contact of an elastic block under combined normal and tangential cyclic loading[J]. International Journal of Mechanical Sciences, 2012, 64(1): 174-183.
[20] QU J J, SUN F Y, ZHAO C S. Performance evaluation of traveling wave ultrasonic motor based on a model with visco-elastic friction layer on stator[J]. Ultrasonics, 2006, 45(1/2/3/4): 22-31.
[21] LEE D, KANNATEY-ASIBU E, CAI W. Ultrasonic welding simulations for multiple layers of lithium-ion battery tabs[J]. Journal of Manufacturing Science and Engineering, 2013, 135(6): 061011.
[22] CHEN K K, ZHANG Y S, WANG H Z. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding[J]. Ultrasonics, 2017, 75: 9-21.
文章导航

/