新型电力系统与综合能源

桩-锚复合基础上拔承载力计算和参数影响研究

展开
  • 1.浙江大学 建筑工程学院,杭州 310058
    2.浙江工业大学 土木工程学院,杭州 310014
孙义舟(1995-),男,北京市人,博士生,主要从事岩土工程研究.

收稿日期: 2021-09-23

  网络出版日期: 2022-07-04

基金资助

国家自然科学基金(52078464);国家自然科学基金(U2006225);国家自然科学基金(51620105008);,国家留学基金委资助项目(202106320164);,国网浙江省电力有限公司技术项目(5211LS18005M)

Calculation Method of Uplift Capacity of Pile-Anchor Composite Foundation and Influence of Parameters

Expand
  • 1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
    2. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Received date: 2021-09-23

  Online published: 2022-07-04

摘要

针对山区广泛存在的上覆土、下卧岩的地质条件,一种桩-锚复合基础被应用在输电线路杆塔工程中.为了揭示其上拔承载机理,完善抗拔承载力和承载力发挥系数k的计算方法,通过PLAXIS 3D有限元软件建立了现场试验案例的验证模型,在此基础上进行了参数研究,研究了岩土体弹性模量和黏聚力以及基础工况对k值的影响.结果表明,基础上部桩和下部锚杆部分的上拔承载极限状态不同步,基础桩、锚部分承载比和承载力发挥系数k与地质和基础构造相关.结合参数研究和上拔荷载与位移关系的相关解析解,提出了考虑基础自重的上拔承载力发挥系数k的理论计算方法,通过与现场试验和有限元结果的对比,验证了本方法的正确性,为该类新型基础的设计和应用提供了理论参考.

本文引用格式

孙义舟, 孙宏磊, 蔡袁强 . 桩-锚复合基础上拔承载力计算和参数影响研究[J]. 上海交通大学学报, 2022 , 56(6) : 701 -709 . DOI: 10.16183/j.cnki.jsjtu.2021.366

Abstract

In view of the extensive geology of overlying soil and underlying rock in mountainous areas, a pile-anchor composite foundation has been used in transmission line tower engineering. To reveal the uplift bearing mechanism and supplement the calculation method of the uplift capacity and the bearing exertion coefficient k, the verification model of field test case was established by using the PLAXIS 3D finite element software to study this problem. Parameter studies were conducted on this foundation. The influence of elastic modulus and cohesion of rock and soil and foundation condition on coefficient k was studied. The results show that there is asynchronism of ultimate uplift limit state of upper and lower parts of the pile-anchor foundation. The bearing ratio and coefficient k of the upper and lower parts of the foundation are related to geology and foundation structure. In combination with the parameter study and the relevant analytical solution of the relationship between the uplift load and the displacement, a theoretical calculation method of the coefficient k considering the foundation weight was proposed. Three test cases were used to perform confirmatory calculations for this method. By comparing with field tests and numerical calculation results, the correctness of this method has been verified. This method provides a theoretical reference for the design and application of this type of new foundation.

参考文献

[1] 林文华, 叶诚耿, 王浩. 山区输电塔边坡成灾模式及塔基失效类型[J]. 水利与建筑工程学报, 2019, 17(6): 50-54.
[1] LIN Wenhua, YE Chenggeng, WANG Hao. Disaster mode of transmission tower slope in mountainous regions and failure type of tower foundation[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(6): 50-54.
[2] 金永军, 王彦兵. 特高压输电线路岩石锚杆基础勘察方法探讨[J]. 电力勘测设计, 2019 (1): 11-15.
[2] JIN Yongjun, WANG Yanbing. Discussion on investigation method of rock bolt foundation for UHV transmission line engineering[J]. Electric Power Survey & Design, 2019 (1): 11-15.
[3] 崔强, 邢明, 杨文智, 等. 喀斯特地区短桩锚杆复合基础现场抗拔试验及设计方法研究[J]. 岩石力学与工程学报, 2018(11): 2621-2630.
[3] CUI Qiang, XING Ming, YANG Wenzhi, et al. Field pull-out test and design method of the short pile and anchor composite foundation in the Karst area[J]. Chinese Journal of Rock Mechanics and Engineering, 2018(11): 2621-2630.
[4] 许顺德. 桩-岩石锚杆复合基础在架空输电线路中的应用[J]. 南方能源建设, 2017, 4(Sup.1): 116-119.
[4] XU Shunde. Application of pile-rock anchor composite foundation in transmission line[J]. Southern Energy Construction, 2017, 4(Sup.1): 116-119.
[5] 郑卫锋, 刘利民, 刘义, 等. 输电线路复合式锚杆基础现场试验研究[J]. 建筑科学, 2012, 28(7): 56-58.
[5] ZHENG Weifeng, LIU Limin, LIU Yi, et al. Experiment research of composite anchor foundation in transmission line[J]. Building Science, 2012, 28(7): 56-58.
[6] 程永锋, 鲁先龙, 丁士君, 等. 掏挖与岩石锚杆复合型杆塔基础抗拔试验与计算[J]. 电力建设, 2012, 33(3): 6-10.
[6] CHENG Yongfeng, LU Xianglong, DING Shijun, et al. Experimental and computational research on the uplift of composite foundation of belled pier and rock anchor in transmission line engineering[J]. Electric Power Construction, 2012, 33(3): 6-10.
[7] 鲁先龙, 乾增珍, 崔强. 黄土地基掏挖扩底基础抗拔试验研究[J]. 岩土力学, 2014(3): 647-652.
[7] LU Xianlong, QIAN Zengzhen, CUI Qiang. Experimental investigation on uplift behavior of belled piers in loess[J]. Rock and Soil Mechanics, 2014(3): 647-652.
[8] 魏峰先, 郑卫锋. 输电线路直柱锚杆复合基础试验研究[J]. 工程勘察, 2018, 46(10): 24-28.
[8] WEI Fengxian, ZHENG Weifeng. Experimental study on newly column anchor composited foundation in transmission line engineering[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 24-28.
[9] 孟克, 赵戈, 王文明, 等. 新型输电线路复合基础性能及设计方法研究[J]. 山西建筑, 2020, 46(12): 7-9.
[9] MENG Ke, ZHAO Ge, WANG Wenming, et al. Study on performance and design method of new transmission line composite foundation[J]. Shanxi Architecture, 2020, 46(12): 7-9.
[10] KRANTHIKUMAR A, SAWANT V A, KUMAR P, et al. Numerical and experimental investigations of granular anchor piles in loose sandy soil subjected to uplift loading[J]. International Journal of Geomechanics, 2017, 17(2): 04016059. 1-10.
[11] QIAN Z Z, LU X L, YANG W Z. Comparative field tests on straight-sided and belled piers on sloping ground under combined uplift and lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1): 04018099. 1-14.
[12] 孙益振, 郑卫锋, 范志强. 输电线路节理化岩体注浆锚杆基础抗拔力模型试验研究[J]. 岩土力学, 2012, 33(1): 78-82.
[12] SUN Yizhen, ZHENG Weifeng, FAN Zhiqiang. Tension model test research on grouted bolts foundation in jointed rock masses for transmission lines[J]. Rock and Soil Mechanics, 2012, 33(1): 78-82.
[13] BHATTACHARYA P, KUMAR J. Uplift capacity of anchors in layered sand using finite-element limit analysis: Formulation and results[J]. International Journal of Geomechanics, 2016, 16(3): 4015078.
[14] PERAZZELLI, PAOLO, GEORG ANAGNOSTOU. Uplift resistance of strip anchors in cohesive frictional mediums of limited tensile strength[J]. International Journal of Geomechanics, 2017, 17 (9): 4017042.
[15] 中华人民共和国行业标准编写组. 架空输电线路基础设计技术规程: DL/T 5219—2014[S]. 北京: 中国计划出版社, 2014.
[15] Industry Standard Compilation Group of the People’s Republic of China. Technical regulation for designing foundation of overhead transmission line: DL/T 5219—2014[S]. Beijing: China Planning Press, 2014.
[16] 中华人民共和国行业标准编写组. 架空输电线路锚杆基础设计规程: DL/T 5544—2018[S]. 北京: 中国计划出版社, 2018.
[16] Industry Standard Compilation Group of the People’s Republic of China. Design code for anchor foundation of overhead transmission line: DL/T 5544—2018[S]. Beijing: China Planning Press, 2018.
[17] 龚晓南, 解才, 周佳锦, 等. 静钻根植竹节桩抗压与抗拔对比研究[J]. 上海交通大学学报, 2018, 52(11): 1467-1474.
[17] GONG Xiaonan, XIE Cai, ZHOU Jiajin, et al. A comparative study on the static drill rooted nodular piles under tension and compression[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1467-1474.
[18] 明敏. 海上风电单桩基础水平承载力影响参数不确定性研究[D]. 武汉: 华中科技大学, 2019.
[18] MING Min. The uncertain parametric study of the lateral bearing capacity of offshore wind turbine single pile foundations[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[19] FABRIS C, SCHWEIGER H F, PULKO B, et al. Numerical simulation of a ground anchor pullout test monitored with fiber optic sensors[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2), 4020163.
[20] 长江水利委员会长江科学院. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2014.
[20] Yangtze River Scientific Research Institute, Changjiang Water Resources Commission. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2014.
[21] 《工程地质手册》编委会. 工程地质手册[M]. 第5版. 北京: 中国建筑工业出版社, 2018.
[21] Editorial Committee of Geological Engineering Handbook. Geological engineering handbook[M]. 5th ed. Beijing: China Architecture & Building Press, 2018.
[22] International Electrotechnical Commission. Overhead line―Testing of foundations for structures: IEC 61773 [S]. Switzerland: International Electrotechnical Commission, 1996.
[23] 鲁先龙, 乾增珍, 童瑞铭, 等. 戈壁碎石土地基原状土掏挖基础抗拔试验研究[J]. 土木建筑与环境工程, 2012, 34(4): 24-30.
[23] LU Xianlong, QIAN Zengzhen, TONG Ruiming, et al. Field test analysis on belled pier foundations under tensile load in gravel Gobi[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(4): 24-30.
[24] PHOON K K. Modeling and simulation of stochastic data[DB/OL]. (2006-02-26)[2021-09-23]. https:∥ascelibrary.org/doi/abs/10.1061/40803(187)3.
[25] TANG C, PHOON K K. Statistical evaluation of model factors in reliability calibration of high-displacement helical piles under axial loading[J]. Canadian Geotechnical Journal, 2020, 57 (2): 246-262.
[26] 孙晓立. 抗拔桩承载力和变形计算方法研究[D]. 上海: 同济大学, 2007.
[26] SUN Xiaoli. Study of the uplift capacity and deformation of tension piles[D]. Shanghai: Tongji University, 2007.
[27] RANDOLPH M F. A theoretical study of the performance of piles[D]. Cambridgeshire, UK: University of Cambridge, 1978.
[28] 许宏发, 王武, 江淼, 等. 灌浆岩石锚杆拉拔变形和刚度的理论解析[J]. 岩土工程学报, 2011, 33(10): 1511-1516.
[28] XU Hongfa, WANG Wu, JIANG Miao, et al. Theoretical analysis of pullout deformation and stiffness of grouted rockbolts[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1511-1516.
文章导航

/