沿海组合地层人工冻结过程中的水分迁移及变形特性
收稿日期: 2021-02-11
网络出版日期: 2022-06-07
基金资助
国家自然科学基金青年基金项目(41702299)
Water Migration and Deformation Characteristics of Coastal Complex Strata in Artificial Freezing Process
Received date: 2021-02-11
Online published: 2022-06-07
在沿海上软黏下粉砂组合地层中进行人工地层冻结法施工时,粉砂土和软黏土在冻结过程中表现出的水分迁移和变形特性上的差异性不可忽略,是目前较多冻结法工程事故的根源.为了探明两者之间的差异性,通过自制单向冻结仪对原状上海第②3层灰色粉砂土及重塑上海第④层淤泥质软黏土分别进行冷端温度为 -20、-15、-10 ℃的冻结试验,分析两种土在冻结过程中水分迁移及变形特征的差异.结果表明,粉砂土及软黏土的总变形曲线和分层变形曲线可按土性分为 I 类陡变型曲线(粉砂土)和 II 类缓变型曲线(软黏土),软黏土分层变形曲线在某些分层中还表现出较大的波动性.表明冻结过程中, 软黏土内部水分迁移充分发展,而粉砂土内部大部分水分迅速冻结,迁移不显著.两种土性表现出的变形曲线的差异性和冻结前后的水分分布曲线存在一致对应性.该研究成果可为沿海上软黏下粉砂组合地层冻结法实践中应对冻胀等工程问题的相关措施提出针对性建议.
周洁, 任君杰 . 沿海组合地层人工冻结过程中的水分迁移及变形特性[J]. 上海交通大学学报, 2022 , 56(5) : 675 -683 . DOI: 10.16183/j.cnki.jsjtu.2021.057
The difference in the water migration and the deformation characteristics of silty sand and clay in the freezing process cannot be ignored when the artificial ground freezing method is used in coastal complex strata consisting of clay and silty sand, and is also the root cause of current engineering accidents caused by freezing. In order to find out the difference of the water migration and the deformation characteristics between the silty sand and clay, a self-made single side freezing instrument was used to conduct a series of freezing tests of original silty sand of ②3 layer and the remodeled clay of ④ layer in Shanghai at a freezing temperature of -20 ℃, -15 ℃, and -10 ℃. The results show that the deformation curves can be divided into steep curve I(silty sand) and gradual curve II(clay). The deformation curves of different layers of clay soil sample fluctuated greatly with time. The results indicate that water migration is fully developed inside the clay during the freezing process, while most of the water inside the silty sand freeze quickly and thus water migration is not developed as obvious as that inside the clay. In addition, the deformation curves of the two types of soils is consistent with the distribution changes of water inside the silty sand and clay after freezing. Based on the research results, specific suggestions can be made for the relevant measures to deal with engineering problems such as frost heave in the practice of the freezing method for coastal complex strata consisted of silty sand and clay.
Key words: artificial ground freezing method; water migration; silty sand; clay
[1] | 武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016. |
[1] | WU Chaojun. Depositional environment and geotechnical properties for the upper Shanghai clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. |
[2] | 张凌华. 长江南京—镇江段现代河漫滩沉积特征与环境意义[D]. 南京: 南京大学, 2015. |
[2] | ZHANG Linghua. Sediment characteristics of overbank sediments in the Nanjing-Zhenjiang reaches of Yangtze River and their environmental implication[D]. Nanjing: Nanjing University, 2015. |
[3] | 党改红, 丁伯阳, 张勇, 等. 杭州第四系沉积土的动力特性研究[J]. 工程勘察, 2009, 37(12): 31-35. |
[3] | DANG Gaihong, DING Boyang, ZHANG Yong, et al. Research on dynamic properties of Quaternary sediments in Hangzhou[J]. Geotechnical Investigation & Surveying, 2009, 37(12): 31-35. |
[4] | 杜建国. 苏州东南部全新世沉积特征及海侵[J]. 江苏地质, 1997, 21(1): 41-47. |
[4] | DU Jianguo. Holocene sedimentary characteristics and transgression in southeastern Suzhou[J]. Journal of Geology, 1997, 21(1): 41-47. |
[5] | 冯欢欢, 陈馈, 王助锋, 等. 大连富水复合地层盾构施工关键技术探讨[J]. 现代隧道技术, 2014, 51(1): 186-191. |
[5] | FENG Huanhuan, CHEN Kui, WANG Zhufeng, et al. Discussion of key construction techniques for a shield-driven tunnel in a water-rich mixed ground[J]. Modern Tunnelling Technology, 2014, 51(1): 186-191. |
[6] | 赵长荣, 胥勤勉, 袁桂邦, 等. 天津滨海新区全新世沉积特征和沉积过程[J]. 人民黄河, 2012, 34(8): 48-50. |
[6] | ZHAO Changrong, XU Qinmian, YUAN Guibang, et al. Holocene epoch sedimentation characteristics and process in Tianjin new coastal region[J]. Yellow River, 2012, 34(8): 48-50. |
[7] | 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001. |
[7] | XU Xuezu, WANG Jiacheng, ZHANG Lixin. Permafrost physics[M]. Beijing: Science Press, 2001. |
[8] | NIXON J F D. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28(6): 843-859. |
[9] | 王家澄, 徐学祖, 张立新, 等. 土类对正冻土成冰及冷生组构影响的实验研究[J]. 冰川冻土, 1995, 17(1): 16-22. |
[9] | WANG Jiacheng, XU Xiaozu, ZHANG Lixin, et al. Experimental study on the influence of soil types on ice formation and cold-formed fabric of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1): 16-22. |
[10] | GUTHRIE W S, HERMANSSON Å. Frost heave and water uptake relations in variably saturated aggregate base materials[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1821(1): 13-19. |
[11] | 程培峰, 宇德忠, 徐云哲. 季冻区粉砂土冻胀试验及路基冻胀模型[J]. 中外公路, 2011, 31(2): 20-22. |
[11] | CHENG Peifeng, YU Dezhong, XU Yunzhe. Frost heaving test and subgrade frost heaving model of silty sand in seasonal frozen area[J]. Journal of China & Foreign Highway, 2011, 31(2): 20-22. |
[12] | 于琳琳. 不同人工冻结条件下土的冻胀试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
[12] | YU Linlin. Test research on frost heave of soils under different artificial freezing conditions[D]. Harbin: Harbin Institute of Technology, 2006. |
[13] | DARROW M M, HUANG S L, SHUR Y, et al. Improvements in frost heave laboratory testing of fine-grained soils[J]. Journal of Cold Regions Engineering, 2008, 22(3): 65-78. |
[14] | 吴礼舟, 许强, 黄润秋. 非饱和黏土的冻胀融沉过程分析[J]. 岩土力学, 2011, 32(4): 1025-1028. |
[14] | WU Lizhou, XU Qiang, HUANG Runqiu. Analysis of freezing-thawing test process of unsaturated clay[J]. Rock and Soil Mechanics, 2011, 32(4): 1025-1028. |
[15] | 严晗, 王天亮, 刘建坤. 粉砂土反复冻胀融沉特性试验研究[J]. 岩土力学, 2013, 34(11): 3159-3165. |
[15] | YAN Han, WANG Tianliang, LIU Jiankun. Experimental study of repeated frost heave and thaw settlement properties of silty sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3159-3165. |
[16] | 马宏岩, 张锋, 冯德成, 等. 单向冻结条件下饱和粉质黏土的冻胀试验研究[J]. 建筑材料学报, 2016, 19(5): 926-932. |
[16] | MA Hongyan, ZHANG Feng, FENG Decheng, et al. Experimental study on frost heave of saturated silty clay under single side freezing[J]. Journal of Building Materials, 2016, 19(5): 926-932. |
[17] | 唐益群, 洪军, 杨坪, 等. 人工冻结作用下淤泥质黏土冻胀特性试验研究[J]. 岩土工程学报, 2009, 31(5): 772-776. |
[17] | TANG Yiqun, HONG Jun, YANG Ping, et al. Frost-heaving behaviors of mucky clay by artificial horizontal freezing method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 772-776. |
[18] | 唐益群, 严婧婧. 上海冻融淤泥质软黏土孔隙结构特征分形研究[J]. 同济大学学报(自然科学版), 2019, 47(5): 627-633. |
[18] | TANG Yiqun, YAN Jingjing. Fractals of pore structure characteristic of muddy clay in shanghai after artificial ground freezing[J]. Journal of Tongji University (Natural Science), 2019, 47(5): 627-633. |
[19] | 陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7): 1046-1051. |
[19] | CHEN Youliang, WANG Ming, XU Shan, et al. Tensile and compressive strength tests on artifical frozen soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1046-1051. |
[20] | 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. |
[20] | Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planing Press, 2019. |
/
〈 |
|
〉 |