机械与动力工程

甲烷及掺氢燃气吹熄极限的大涡模拟研究

展开
  • 1.江苏大学 能源研究院, 江苏 镇江 212013
    2.江苏大学 能源与动力工程学院,江苏 镇江 212013
    3.燃烧与环境中心, 巴里 70023, 意大利
周希瑞(1996-),男,江苏省宿迁市人,硕士生,研究方向为湍流燃烧的大涡模拟.

收稿日期: 2020-10-15

  网络出版日期: 2022-06-07

基金资助

国家自然科学基金项目(91741117);国家自然科学基金项目(51576092)

Large Eddy Simulation on Blow-Off Limit of Methane and Hydrogen-Mixed Gas

Expand
  • 1. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    2. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013,Jiangsu, China
    3. Centro Combustione Ambiente, Bali 70023, Italy

Received date: 2020-10-15

  Online published: 2022-06-07

摘要

利用大涡模拟法计算研究甲烷和掺氢燃气在悉尼非均匀入流射流燃烧器上的吹熄极限.利用GRI 3.0详细反应机理和28步、19步简化反应机理对比计算不同掺氢燃气状态下的层流预混火焰,证明了19步简化反应机理具有良好性能.利用动态增厚火焰燃烧模型结合19步反应机理,计算研究以掺氢燃气(体积比V(H2):V(CH4):V(CO):V(CO2)=0.2:0.2:0.27:0.33)为燃料的悉尼部分预混中心射流火焰.计算得到在FA和FJ布局下,掺氢燃气的火焰吹熄极限速度分别为90 m/s和109 m/s,甲烷的火焰吹熄极限速度分别为74 m/s和128 m/s,分析发现吹熄极限的差异与不同布局下燃气与空气混合不均匀程度相关.研究表明,优化燃气与空气的进气布局和掺混过程可以提升燃烧稳定性.

本文引用格式

周希瑞, 王平, 曾海翔, 张洋, PRASHANT Shrotriya, ANTONIO Ferrante, 祁浩天 . 甲烷及掺氢燃气吹熄极限的大涡模拟研究[J]. 上海交通大学学报, 2022 , 56(5) : 635 -647 . DOI: 10.16183/j.cnki.jsjtu.2020.329

Abstract

The blow-off limits of methane and hydrogen-mixed gas on the Sydney inhomogeneous inflow jet burner were calculated and studied by large eddy simulation. The GRI 3.0 detailed reaction mechanism, 28-step and 19-step methane simplified reaction mechanisms were used to calculate the laminar premixed flames under the condition of different hydrogen-mixed fuel gases, which demonstrates the good performance of the 19-step simplified mechanism. A dynamic thickening flame combustion model was combined with the 19-step reaction mechanism to compute the Sydney partially premixed jet flame burner with a hydrogen-mixed gas (the volume ratio of V(H2):V(CH4):V(CO):V(CO2) = 0.2:0.2:0.27:0.33). The blow-off limits in FA and FJ layouts of hydrogen-mixed gas are 90 m/s and 109 m/s, while for pure methane flames are 74 m/s and 128 m/s, respectively. The difference of blow-off limits between the two fuels is related to the inhomogeneity of fuel and air mixing in different layouts. This study shows that the combustion stability can be improved by optimizing the inlet layout and mixing process of fuel gas and air.

参考文献

[1] GICQUEL L Y M, STAFFELBACH G, POINSOT T. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.
[2] SYRED N, BEÉR J M. Combustion in swirling flows: A review[J]. Combustion and Flame, 1974, 23(2): 143-201.
[3] MEARES S, MASRI A R. A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures[J]. Combustion and Flame, 2014, 161(2): 484-495.
[4] BARLOW R S, MEARES S, MAGNOTTI G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets[J]. Combustion and Flame, 2015, 162(10): 3516-3540.
[5] GUIBERTI T F, CUTCHER H, ROBERTS W L, et al. Influence of pilot flame parameters on the stability of turbulent jet flames[J]. Energy & Fuels, 2017, 31(3): 2128-2137.
[6] GUIBERTI T F, JUDDOO M, LACOSTE D A, et al. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1777-1784.
[7] CUTCHER H C, BARLOW R S, MAGNOTTI G, et al. Turbulent flames with compositionally inhomogeneous inlets: Resolved measurements of scalar dissipation rates[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1737-1745.
[8] PERRY B A, MUELLER M E, MASRI A R. A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1767-1775.
[9] GALINDO S, SALEHI F, CLEARY M J, et al. MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1759-1766.
[10] KLEINHEINZ K, KUBIS T, TRISJONO P, et al. Computational study of flame characteristics of a turbulent piloted jet burner with inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1747-1757.
[11] KIM N, KIM Y. Multi-environment probability density function approach for turbulent partially-premixed methane/air flame with inhomogeneous inlets[J]. Combustion and Flame, 2017, 182: 190-205.
[12] FRANZELLI B, RIBER E, GICQUEL L Y M, et al. Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame[J]. Combustion and Flame, 2012, 159(2): 621-637.
[13] 曾海翔. 基于DTF模型的部分预混火焰大涡模拟研究[D]. 镇江: 江苏大学, 2020.
[13] ZENG Haixiang. Large eddy simulation of partially premixed flame based on DTF model[D]. Zhenjiang: Jiangsu University, 2020.
[14] HALTER F, CHAUVEAU C, GÖKALP I. Characterization of the effects of hydrogen addition in premixed methane/air flames[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2585-2592.
[15] ZHAO K, CUI D W, XU T M, et al. Effects of hydrogen addition on methane combustion[J]. Fuel Processing Technology, 2008, 89(11): 1142-1147.
[16] TOSHIMITSU K, MATSUO A, KAMEL M R, et al. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows[J]. Journal of Propulsion and Power, 2000, 16(1): 16-21.
[17] LYTRAS I, KOUTMOS P, DOGKAS E. Reduced kinetic models for methane flame simulations[J]. Combustion, Explosion, and Shock Waves, 2019, 55(2): 132-147.
[18] 王平, 侯天增, 余倩. 火焰增厚燃烧模型计算旋转预混火焰的参数敏感性分析[J]. 推进技术, 2018, 39(2): 358-365.
[18] WANG Ping, HOU Tianzeng, YU Qian. Large eddy simulation of premixed swirling flames with thickened-flame model: A sensitivity study[J]. Journal of Propulsion Technology, 2018, 39(2): 358-365.
文章导航

/