机械与动力工程

面向多故障模式的多尺度相似性集成寿命预测

展开
  • 上海交通大学 机械系统与振动国家重点实验室;机械与动力工程学院,上海 200240
舒俊清(1999-),女,安徽省安庆市人,硕士生,主要研究方向为智能预测与健康管理.

收稿日期: 2021-01-25

  网络出版日期: 2022-06-07

基金资助

国家自然科学基金(51875359);上海市自然科学基金(20ZR1428600);教育部-中国移动科研基金研发项目(CMHQ-JS-201900003);临港地区智能制造专项(ZN2017020102);上海商用飞机系统工程科创中心联合研究基金(FASE-2021-M7)

A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes

Expand
  • State Key Laboratory of Mechanical System and Vibration;School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-01-25

  Online published: 2022-06-07

摘要

针对传统相似性方法忽略设备故障模式、退化速度以及监测数据长度间差异性的问题,提出多故障模式下多尺度相似性集成(MFM-MSEN)方法,以提高寿命预测精度并表征预测不确定性.通过训练故障分类模型,设计时序加权预测策略,识别设备故障模式,实现训练与测试设备间的分类匹配并降低匹配复杂度.在此基础上提出多尺度集成策略,可克服单尺度方法的数据利用率限制,并增强预测泛化性能,在多个尺度上匹配健康指标间的相似性,进一步采用核密度估计集成多尺度预测结果,以高精度拟合剩余寿命概率分布.实验结果证明, MFM-MSEN方法具有应对设备退化差异的优越性.

本文引用格式

舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰 . 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022 , 56(5) : 564 -575 . DOI: 10.16183/j.cnki.jsjtu.2021.024

Abstract

Traditional similarity-based methods generally ignore the diversity of equipment fault modes, the difference in degradation rates, and the inconsistency among monitoring data lengths. Thus, a similarity-based multi-scale ensemble method in multiple fault modes (MFM-MSEN) is proposed to improve remaining useful life (RUL) prediction accuracy and characterize prediction uncertainty. By training the fault mode classification model, designing the time-series weighted prediction strategy, and recognizing the fault mode of equipment, the test equipment is matched with the training equipment with the same fault mode to reduce matching complexity, based on which, a multi-scale ensemble strategy is proposed to overcome the data utilization limitation caused by single-scale matching methods and enhance the generalization ability of the proposed MFM-MSEN method. This strategy matches the similarities between test equipment and training equipment at multiple time scales, and then multiscale prediction results are integrated to fit accurate RUL probability distribution by employing kernel density estimation. Experimental results demonstrate the superiority of the proposed MFM-MSEN method in dealing with the differences in equipment degradation.

参考文献

[1] XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178: 255-268.
[2] ZHUO P C, ZHU Y, WU W X, et al. Real-time fault diagnosis for gas turbine blade based on output-hidden feedback Elman neural network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102.
[3] YU W N, KIM I Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129: 764-780.
[4] KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285.
[5] LIU Q M, DONG M, LV W, et al. A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 217-232.
[6] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
[7] ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// 2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, USA: IEEE, 2017: 88-95.
[8] ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
[9] SONG Y, SHI G, CHEN L Y, et al. Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup.1): 85-94.
[10] 宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7): 1611-1619.
[10] SONG Y, XIA T B, ZHENG Y, et al. Remaining useful life prediction of turbofan engine based on Autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25(7): 1611-1619.
[11] WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-6.
[12] CANNARILE F, BARALDI P, ZIO E. An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories[J]. Fuzzy Sets and Systems, 2019, 367: 36-50.
[13] CAI H S, JIA X D, FENG J S, et al. A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112-121.
[14] LIU Y C, HU X F, ZHANG W J. Remaining useful life prediction based on health index similarity[J]. Reliability Engineering & System Safety, 2019, 185: 502-510.
[15] YU W N, KIM I Y, MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering & System Safety, 2020, 199: 106926.
[16] HOU M R, PI D C, LI B R. Similarity-based deep learning approach for remaining useful life prediction[J]. Measurement, 2020, 159: 107788.
[17] XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182.
[18] PENG W W, YE Z S, CHEN N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2283-2293.
[19] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine Run-to-failure simulation[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-9.
[20] RAMASSO E. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: Results and comparisons on C-MAPSS datasets[C]// Second European Conference of the Prognostics and Health Management Society 2014. Nantes, France: CCSD, 2014: 1-13.
文章导航

/