新型电力系统与综合能源

面向高比例新能源并网场景的风光-电动车协同调度方法

展开
  • 1.华北电力大学 新能源电力系统国家重点实验室; 新能源学院, 北京 102206
    2.大唐(赤峰)新能源有限公司,内蒙古自治区 赤峰 024000
李林晏(1997-),男,山西省运城市人,硕士生,从事风光出力特性分析、风光互补系统优化调度研究.

收稿日期: 2022-02-22

  网络出版日期: 2022-06-07

基金资助

雅砻江流域风光水多能互补运行的优化调度方式研究(U1765201)

A Wind-Solar-Electric Vehicles Coordination Scheduling Method for High Proportion New Energy Grid-Connected Scenarios

Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources; School of New Energy, North China Electric Power University, Beijing 102206, China
    2. China Datang (Chifeng) New Energy Co., Ltd., Chifeng 024000, Inner Mongolia Autonomous Region, China

Received date: 2022-02-22

  Online published: 2022-06-07

摘要

风光-电动汽车协同调度能够有效降低风光出力和电动汽车无序充电等多重不确定性对电力系统的不利影响.现有优化调度模型多以等效负荷波动最小为优化目标,仅考虑了等效负荷的整体波动性,无法衡量风光出力与负荷的匹配度且并未考虑不同出力场景下风光出力的差异性.针对上述问题,提出一种面向高比例新能源并网场景的风光-电动车协同调度方法.构建基于蒙特卡罗模拟的电动汽车无序充电模型;基于风光出力预测数据,构建基于Gap statistic和K-means++算法的风光出力典型日划分模型;以等效负荷方差和负荷追踪系数最小为双优化目标,构建风光-电动汽车协同调度模型,并采用NSGA-II算法求解.结果表明:所提模型能够有效提升风光出力与负荷的匹配度,降低等效负荷波动性,从而缓解风光出力和电动汽车无序充电等多重不确定性对电力系统的不利影响.

本文引用格式

李林晏, 韩爽, 乔延辉, 李莉, 刘永前, 阎洁, 刘海东 . 面向高比例新能源并网场景的风光-电动车协同调度方法[J]. 上海交通大学学报, 2022 , 56(5) : 554 -563 . DOI: 10.16183/j.cnki.jsjtu.2022.040

Abstract

Wind-solar-electric vehicles coordinated optimization scheduling can effectively reduce the adverse effects of multiple uncertainties of wind-solar output and disorderly charging of electric vehicles on the power system. Most of the existing optimization scheduling models take the minimum equivalent load fluctuation as the optimization objective, which, only considering the overall fluctuation of equivalent load, cannot measure the matching degree of output-load, and do not consider the difference of output in different output scenarios. Therefore, a wind-solar-electric vehicles coordination scheduling method for high proportion new energy grid-connected scenarios is proposed. First, the disordered charging model of electric vehicles by Monte Carlo simulation is constructed. Then, a wind-solar output typical day classification model using Gap statistical and K-means++ is constructed based on the forecasting data of wind and solar power. Finally, taking the minimum equivalent load variance and load tracking coefficient as the double optimization objectives, a wind-solar-electric vehicles coordination optimization scheduling model is established, and the NSGA-II algorithm is used to solve it. The results demonstrate that the proposed model can effectively improve the matching degree of wind-solar output and load, and reduce the fluctuation of equivalent load, so as to reduce the adverse effects of multiple uncertainties of wind-solar output and disorderly charging of electric vehicles on the power system.

参考文献

[1] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
[1] LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158.
[2] 游广增, 汤翔鹰, 胡炎, 等. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813.
[2] YOU Guangzeng, TANG Xiangying, HU Yan, et al. Flexibility evaluation method for power system based on clustering of typical operating scenarios[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 802-813.
[3] 孙晓明, 王玮, 苏粟, 等. 基于分时电价的电动汽车有序充电控制策略设计[J]. 电力系统自动化, 2013, 37(1): 191-195.
[3] SUN Xiaoming, WANG Wei, SU Su, et al. Coordinated charging strategy for electric vehicles based on time-of-use price[J]. Automation of Electric Power Systems, 2013, 37(1): 191-195.
[4] JIAN L N, ZHENG Y C, SHAO Z Y. High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles[J]. Applied Energy, 2017, 186: 46-55.
[5] SZINAI J K, SHEPPARD C J R, ABHYANKAR N, et al. Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management[J]. Energy Policy, 2020, 136: 111051.
[6] QUDDUS M A, KABLI M, MARUFUZZAMAN M. Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 128: 251-279.
[7] SONG Y H, YANG X, LU Z X. Integration of plug-in hybrid and electric vehicles: Experience from China[C]// IEEE PES General Meeting. Minneapolis, MN, USA: IEEE, 2010: 1-6.
[8] 侯建朝, 胡群丰, 谭忠富. 计及需求响应的风电-电动汽车协同调度多目标优化模型[J]. 电力自动化设备, 2016, 36(7): 22-27.
[8] HOU Jianchao, HU Qunfeng, TAN Zhongfu. Multi-objective optimization model of collaborative WP-EV dispatch considering demand response[J]. Electric Power Automation Equipment, 2016, 36(7): 22-27.
[9] 冉忠, 刘文颖, 荣俊杰, 等. 电动汽车参与受阻风电消纳的源荷优化控制方法[J]. 可再生能源, 2020, 38(3): 358-365.
[9] RAN Zhong, LIU Wenying, RONG Junjie, et al. Source-load optimization control method for electric vehicles participating in blocked wind power consumption[J]. Renewable Energy Resources, 2020, 38(3): 358-365.
[10] 葛少云, 黄镠, 刘洪. 电动汽车有序充电的峰谷电价时段优化[J]. 电力系统保护与控制, 2012, 40(10): 1-5.
[10] GE Shaoyun, HUANG Liu, LIU Hong. Optimization of peak-valley TOU power price time-period in ordered charging mode of electric vehicle[J]. Power System Protection and Control, 2012, 40(10): 1-5.
[11] 郭春林, 杨晓言, 徐轩, 等. V2G模式下电动汽车与可再生能源双层协调优化[J]. 电力系统及其自动化学报, 2019, 31(9): 72-77.
[11] GUO Chunlin, YANG Xiaoyan, XU Xuan, et al. Bi-level coordinated optimization of electric vehicles and renewable energy sources in V2G mode[J]. Proceedings of the CSU-EPSA, 2019, 31(9): 72-77.
[12] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36(15): 4064-4072.
[12] DING Ming, XIE Jiaolong, LIU Xinyu, et al. The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36(15): 4064-4072.
[13] 黎静华, 孙海顺, 文劲宇, 等. 生成风电功率时间序列场景的双向优化技术[J]. 中国电机工程学报, 2014, 34(16): 2544-2551.
[13] LI Jinghua, SUN Haishun, WEN Jinyu, et al. A two-dimensional optimal technology for constructing wind power time series scenarios[J]. Proceedings of the CSEE, 2014, 34(16): 2544-2551.
[14] 王开艳, 罗先觉, 贾嵘, 等. 充分发挥多能互补作用的风蓄水火协调短期优化调度方法[J]. 电网技术, 2020, 44(10): 3631-3641.
[14] WANG Kaiyan, LUO Xianjue, JIA Rong, et al. Short-term coordinated scheduling of wind-pumped-hydro-thermal power system with multi-energy complementarities[J]. Power System Technology, 2020, 44(10): 3631-3641.
[15] 温正楠, 刘继春. 风光水互补发电系统与需求侧数据中心联动的优化调度方法[J]. 电网技术, 2019, 43(7): 2449-2460.
[15] WEN Zhengnan, LIU Jichun. A optimal scheduling method for hybrid wind-solar-hydro power generation system with data center in demand side[J]. Power System Technology, 2019, 43(7): 2449-2460.
[16] Federal Highway Administration. National household travel survey (2017)[DB/OL]. (2019-04-23)[2020-12-17]. http://nhts.ornl.gov.
[17] 温剑锋, 陶顺, 肖湘宁, 等. 基于出行链随机模拟的电动汽车充电需求分析[J]. 电网技术, 2015, 39(6): 1477-1484.
[17] WEN Jianfeng, TAO Shun, XIAO Xiangning, et al. Analysis on charging demand of EV based on stochastic simulation of trip chain[J]. Power System Technology, 2015, 39(6): 1477-1484.
[18] TIBSHIRANI R, WALTHER G, HASTIE T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 63(2): 411-423.
[19] ARTHUR D, VASSILVITSKII S. K-Means++: The advantages of careful seeding[C]// Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans, Louisiana, USA: ACM, 2007.
[20] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164.
[20] YE Lin, QU Xiaoxu, YAO Yanxiang, et al. Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power Systems, 2018, 42(4): 158-164.
[21] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 311-338.
[22] 刘文颖, 文晶, 谢昶, 等. 考虑风电消纳的电力系统源荷协调多目标优化方法[J]. 中国电机工程学报, 2015, 35(5): 1079-1088.
[22] LIU Wenying, WEN Jing, XIE Chang, et al. Multi-objective optimal method considering wind power accommodation based on source-load coordination[J]. Proceedings of the CSEE, 2015, 35(5): 1079-1088.
文章导航

/