交通运输工程

铝合金薄板含胶滚压成形工艺建模及实验

展开
  • 1.同济大学 机械与能源工程学院,上海 201804
    2.上汽大众汽车有限公司,上海 201805
李元辉(1995-),男,辽宁省丹东市人,硕士生,从事车身薄板含胶成型制造研究.

收稿日期: 2021-06-08

  网络出版日期: 2022-05-07

基金资助

国家自然科学基金资助项目(51975416)

Modeling and Experiment on Roll-Hemming Forming Process of Aluminum Alloy Sheet with Adhesive

Expand
  • 1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China
    2. SAIC Volkswagen Automotive Co., Ltd., Shanghai 201805, China

Received date: 2021-06-08

  Online published: 2022-05-07

摘要

在门盖件滚压成形中,非金属折边胶层以及轻质金属与折边胶的交互作用影响门盖的制造精度和性能,为汽车车身薄板含胶滚压成形及其质量控制研究带来显著困难.为此,建立基于有限元-光滑粒子流体动力学法(FEM-SPH)的铝合金薄板含胶滚压成形数值分析模型.利用SPH模拟折边胶挤压流动过程,结合FEM建立含胶薄板的滚压仿真模型.搭建含胶铝合金薄板的两道次滚压成形实验平台,以滚边损耗量和表面波浪系数为滚压成形质量指标,分析验证数值模型的有效性.基于正交试验法研究首末道次之间的质量变化,以及影响质量的关键工艺参数.结果表明:与首道次相比,末道次的滚边损耗量降低、表面波浪系数变小;影响表面波浪系数的工艺参数由大到小依次为翻边高度、圆角半径、TCP-RTP值、滚轮直径;影响滚边损耗量的工艺参数由大到小依次为TCP-RTP值、圆角半径、翻边高度、滚轮直径.构建的滚压成形质量与工艺参数之间的拟合关系能够支持含胶铝合金薄板的滚压成形质量预测.

本文引用格式

李元辉, 李建军, 王顺超, 张珑耀, 朱文峰 . 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022 , 56(4) : 532 -542 . DOI: 10.16183/j.cnki.jsjtu.2021.198

Abstract

In the roll-hemming forming process of door cover, the non-metallic flanging adhesive and the interaction between light metal and flanging adhesive will affect the manufacturing accuracy and performance of the door cover, and increase the difficulty of roll-hemming forming and quality control of automobile body sheet with adhesive. Therefore, a numerical analysis model for roll-hemming forming of aluminum alloy sheet with adhesive was proposed based on the finite element method and the smooth particle hydrodynamic (FEM-SPH) method. First, SPH was used to simulate the extrusion flow process of the flanging adhesive, and a roll-hemming simulation model of sheet metal with adhesive was established in combination with FEM. Then, an experimental platform for two-pass roll-hemming forming of aluminum alloy sheet with adhesive was built, and the roll-hemming loss and surface wave coefficient were taken as the roll-hemming forming quality index to analysis and verify the validity of the numerical model. After that, the quality change between the first pass and the last pass and the key process parameters affecting quality were studied based on the orthogonal test method. Finally, the fitting relationship between roll-hemming forming quality and process parameters was established. The results show that the roll-hemming loss and the surface wave coefficient of the last pass are reduced compared with the first pass. The process parameters that affect the surface wave coefficient in descending order are flanging height, fillet radius, TCP-RTP value, and roller diameter. The process parameters that affect the roll-hemming loss in descending order are TCP-RTP value, fillet radius, flanging height, and roller diameter. The fitting relationship can support the prediction of roll-hemming forming quality of aluminum alloy sheet with adhesive.

参考文献

[1] LIMON-LEYVA P A, BALVANTÍN A J, DIOSDADO-DE-LA-PEÑA J A, et al. Parametric optimization of roll-hemming process in oblique planes with linear and non-linear trajectories[J]. Journal of Manufacturing Processes, 2020, 50: 123-131.
[2] 韩飞, 李荣健. 超高强钢多道次辊弯成形回弹规律研究[J]. 机械工程学报, 2019, 55(2): 73-81.
[2] HAN Fei, LI Rongjian. Springback law of ultra high strength steel in multiple stands roll forming process[J]. Journal of Mechanical Engineering, 2019, 55(2): 73-81.
[3] 李雪龙, 于忠奇, 赵亦希, 等. 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019, 53(11): 1375-1380.
[3] LI Xuelong, YU Zhongqi, ZHAO Yixi, et al. Study on flange wrinkling prediction in preforming stage during multi-pass conventional spinning[J]. Journal of Shanghai Jiao Tong University, 2019, 53(11): 1375-1380.
[4] LE MAOÛT N, MANACH P Y, THUILLIER S. Influence of prestrain on the numerical simulation of the roller hemming process[J]. Journal of Materials Processing Technology, 2012, 212(2): 450-457.
[5] HU X, LIN Z Q, LI S H, et al. Fracture limit prediction for roller hemming of aluminum alloy sheet[J]. Materials & Design, 2010, 31(3): 1410-1416.
[6] 程楠. 水滴包边技术在汽车发动机罩盖上的应用[J]. 汽车工艺与材料, 2016(1): 11-13.
[6] CHENG Nan. Application of water drop wrapping technology on automobile hood hood[J]. Automobile Technology & Material, 2016(1): 11-13.
[7] 肖寿仁, 李军, 周燕辉. 汽车车顶天窗成形工艺及翻边回弹补偿分析[J]. 热加工工艺, 2012, 41(5): 80-83.
[7] XIAO Shouren, LI Jun, ZHOU Yanhui. Flange forming process of car sunroof skylight and its springback compensation analysis[J]. Hot Working Technology, 2012, 41(5): 80-83.
[8] 郭婷婷. 汽车天窗滚边工艺仿真分析及实验研究[D]. 合肥: 合肥工业大学, 2016.
[8] GUO Tingting. The simulation analysis and experimental study of the sunroof roller hemming[D]. Hefei: Hefei University of Technology, 2016.
[9] KLEEH T, MERKLEIN M, ROLL K. Modeling laser heating for roller hemming applications[J]. Key Engineering Materials, 2011, 473: 501-508.
[10] 余魁, 赵顺旺, 柳玉起. 优化滚边工艺提升车门区域尺寸匹配精度的方法研究[J]. 精密成形工程, 2019, 11(3): 122-126.
[10] YU Kui, ZHAO Shunwang, LIU Yuqi. Dimensional accuracy on matching areas of vehicle doors by optimizing hemming process[J]. Journal of Netshape Forming Engineering, 2019, 11(3): 122-126.
[11] 李萍, 井碧臣, 黄彪, 等. 1100铝合金双滚轮滚压包边模拟及实验研究[J]. 精密成形工程, 2018, 10(2): 92-98.
[11] LI Ping, JING Bichen, HUANG Biao, et al. Simulation and experimental study on double-roller rolling hemming process of 1100 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 92-98.
[12] LIEWALD M, HÖNLE S, SINDEL M. Surface roughening of an aluminum 6016 alloy during bending and hemming[J]. International Journal of Material Forming, 2016, 9(2): 203-213.
[13] 伍俊棠, 赵亦希, 李淑慧, 等. 滚压包边角度对包边件轮廓尺寸变动的影响[J]. 锻压技术, 2010, 35(3): 29-33.
[13] WU Juntang, ZHAO Yixi, LI Shuhui, et al. Effect of hemming angle on dimensional deviation during roller hemming process[J]. Forging & Stamping Technology, 2010, 35(3): 29-33.
[14] 卢鹏, 兰凤崇, 周云郊. 机器人铝合金滚边参数对其质量影响的研究[J]. 机械设计与制造, 2015(9): 101-103.
[14] LU Peng, LAN Fengchong, ZHOU Yunjiao. Study on quality influence of roller hemming parameters about aluminum alloy roller hemming parameters by robot[J]. Machinery Design & Manufacture, 2015(9): 101-103.
[15] 张均华, 刘渝, 杨睿, 等. 滚压包边成形质量缺陷研究[J]. 制造业自动化, 2015, 37(6): 26-28.
[15] ZHANG Junhua, LIU Yu, YANG Rui, et al. The research of quality defect of robot roller hemming[J]. Manufacturing Automation, 2015, 37(6): 26-28.
[16] 卢妍, 张宁红, 陈中春, 等. 汽车开启件滚边工艺缺陷控制方法研究[J]. 模具技术, 2015(4): 1-4.
[16] LU Yan, ZHANG Ninghong, CHEN Zhongchun, et al. Research on defect control methods for robotic roller hemming process of autobody components[J]. Die and Mould Technology, 2015(4): 1-4.
[17] 李建军, 朱文峰. 基于SPH的平面曲线铝合金薄板滚压成形数值仿真与试验研究[J]. 机械工程学报, 2020, 56(24): 61-71.
[17] LI Jianjun, ZHU Wenfeng. Numerical simulation and experiment of roller hemming-compression with flat surface-curved edge aluminum alloy sheet based on SPH[J]. Journal of Mechanical Engineering, 2020, 56(24): 61-71.
[18] 徐文欢. 车身覆盖件用折边胶涂覆质量问题分析及控制措施[J]. 汽车工艺与材料, 2019(3): 9-13.
[18] XU Wenhuan. Quality problem analysis and control measures of hemming adhesive coating for automotive body panel[J]. Automobile Technology & Material, 2019(3): 9-13.
[19] MOBARA S E H, GHOBADIAN R, ROUZBAHANI F, et al. Numerical simulation of non-rigid landslide into reservoir with erodible sediment bed using SPH method[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 4347-4366.
文章导航

/