交通运输工程

基于人工神经网络的自航浮标测波方法可行性

展开
  • 1.哈尔滨工程大学 船舶工程学院,哈尔滨 150001
    2.海军大连舰艇学院 航海系,辽宁 大连 116018
秦艺超(1996-),男,山西省临汾市人,硕士生,从事波浪反演研究.

收稿日期: 2021-03-23

  网络出版日期: 2022-05-07

基金资助

国家自然科学基金(51809066);装备发展部装备预先研究项目(JZX7Y20190247001001);上海交通大学海洋工程国家重点实验室开放课题(1902)

Feasibility of Wave Measurement by Using a Sailing Buoy and the Artificial Neural Network Technique

Expand
  • 1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
    2. Department of Marine Navigation, Dalian Naval Academy, Dalian 116018, Liaoning, China

Received date: 2021-03-23

  Online published: 2022-05-07

摘要

海洋波浪会对船舶营运和安全产生不利影响,实时准确的随船海浪监测对绿色智能船舶及航行安全至关重要.利用船舶运动反演遭遇海浪信息是一种重要的随船海浪监测手段,具有成本低、时空分辨率高等诸多优点,受到广泛关注.针对现有船舶运动反演海浪模型存在的不足,提出了一种基于人工神经网络(Artificial Neural Network, ANN)的反演模型.以船舶摇荡运动时历作为输入,以波浪时历作为输出,利用人工神经网络进行船舶运动特征提取,输入线性函数进行波面时历反演.为验证反演模型的可行性和精度,开展了船模水池试验.结果表明,提出的基于人工神经网络的测波方法能够很好地实现规则波和不规则波浪时历反演,规则波反演统计误差大多小于10%,不规则波反演误差在10%左右.提出的方法为船舶运动反演海浪时域信息提供了一种有效可行的手段.

本文引用格式

秦艺超, 黄礼敏, 王骁, 马学文, 段文洋, 郝伟 . 基于人工神经网络的自航浮标测波方法可行性[J]. 上海交通大学学报, 2022 , 56(4) : 498 -505 . DOI: 10.16183/j.cnki.jsjtu.2021.094

Abstract

Ocean waves have adverse effects on the operation and safety of ships. Real-time and accurate onboard wave monitoring is essential for green smart ships and navigational safety. It is an important method to use ship motion to perform inversion of the information of encountering waves, which has many advantages such as low cost and high spatio-temporal resolution, and has attracted wide attention. An inversion model based on artificial neural network (ANN) is proposed to deal with the shortcomings of existing ship motion inversion ocean wave models. Taking the motion time history of the ship as the input and the wave elevation time history as the output, the artificial neural network is used to extract the motion features of the ship, and the linear function is input to perform wave surface time history inversion. To verify the feasibility and the accuracy of the inversion model, a ship model tank test is conducted. The results show that the proposed wave measurement method based on the artificial neural network can well achieve regular wave and irregular wave elevation time history inversion. Most of the statistical errors of regular wave inversion are less than 10% and the error of irregular wave inversion is about 10%. The method proposed provides an effective and feasible means for inversion of wave time information in ship motion.

参考文献

[1] CLAUSS G F, KOSLECK S, TESTA D. Critical si-tuations of vessel operations in short crested seas: Forecast and decision support system [C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, USA: ASME, 2010: 319-332.
[2] STREDULINSKY D C, THORNHILL E M. Ship motion and wave radar data fusion for shipboard wave measurement[J]. Journal of Ship Research, 2011, 55(2): 73-85.
[3] THORNHILL E M, STREDULINSKY D C. Real time local sea state measurement using wave radar and ship motions[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 248-259.
[4] NIELSEN U D. A concise account of techniques available for shipboard sea state estimation[J]. Ocean Engineering, 2017, 129: 352-362.
[5] ISEKI T, OHTSU K. Bayesian estimation of directional wave spectra based on ship motions[J]. Control Engineering Practice, 2000, 8(2): 215-219.
[6] ISEKI T. Extended Bayesian estimation of directional wave spectra [C]//Proceedings of ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada: ASME, 2004: 611-616.
[7] NIELSEN U D. Estimations of on-site directional wave spectra from measured ship responses[J]. Marine Structures, 2006, 19(1): 33-69.
[8] NIELSEN U D. Introducing two hyperparameters in Bayesian estimation of wave spectra[J]. Probabilistic Engineering Mechanics, 2008, 23(1): 84-94.
[9] PASCOAL R, GUEDES SOARES C. Non-parametric wave spectral estimation using vessel motions[J]. Applied Ocean Research, 2008, 30(1): 46-53.
[10] PASCOAL R, GUEDES SOARES C. Kalman filtering of vessel motions for ocean wave directional spectrum estimation[J]. Ocean Engineering, 2009, 36(6/7): 477-488.
[11] PASCOAL R, PERERA L P, GUEDES SOARES C. Estimation of directional sea spectra from ship motions in sea trials[J]. Ocean Engineering, 2017, 132: 126-137.
[12] NIELSEN U D, GALEAZZI R, BRODTKORB A H. Evaluation of shipboard wave estimation techniques through model-scale experiments [C]//OCEANS 2016-Shanghai. Piscataway, NJ, USA: IEEE, 2016: 1-8.
[13] MAK B, DÜZ B. Ship as a wave buoy: Estimating relative wave direction from in-service ship motion measurements using machine learning [C]//Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, UK: ASME, 2019, V009T13A043.
[14] CHENG X, LI G Y, SKULSTAD R, et al. Modeling and analysis of motion data from dynamically positioned vessels for sea state estimation [C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 6644-6650.
[15] SIDARTA D E, TCHERNIGUIN N, TAN J H, et al. An ANN-based model to artificially transform a floating vessel into a wave monitoring buoy[DB/OL]. (2020-10-27) [2021-03-22]. https://onepetro.org/OTCASIA/proceedings-abstract/20OTCA/1-20OTCA/450910.
[16] THIJS H. New C-DRONE-for undisturbed wave spectrum measurements [EB/OL] (2017-12-29) [2021-03-22]. https://www.marinetechnologynews.com/news/drone-undisturbed-spectrum-measurements-555571/.
[17] 戴现令, 娄虎, 阮文涛, 等. 一种水质检测三体船设计及其水阻力计算[J]. 装备制造技术, 2020(5): 31-34.
[17] DAI Xianling, LOU Hu, RUAN Wentao, et al. Design of a trimaran for water quality detection and calculation of its water resistance[J]. Equipment Manufacturing Technology, 2020(5): 31-34.
[18] 陈雨虹. 基于神经网络的三自由度直升机智能控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[18] CHEN Yuhong. Research on neural network based intelligent control method for 3-dof helicopters[D]. Harbin: Harbin Institute of Technology, 2019.
[19] 侯海艳, 侯金亮, 黄春林, 等. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[19] HOU Haiyan, HOU Jinliang, HUANG Chunlin, et al. Retrieve snow depth of north of Xinjiang region from ARMS2 data based on artificial neural network technology[J]. Remote Sensing Technology and Application, 2018, 33(2): 241-251.
[20] 喻祥尤. 基于深度学习的机器人场景识别研究[D]. 沈阳: 沈阳工业大学, 2017.
[20] YU Xiangyou. Research on robot scene recognition based on depth learning[D]. Shenyang: Shenyang University of Technology, 2017.
文章导航

/