船舶海洋与建筑工程

基于Kerr地基模型的基坑开挖引起下卧既有隧道受力变形

展开
  • 1.浙江大学 滨海和城市岩土工程研究中心, 杭州 310058
    2.浙江大学 平衡建筑研究中心,杭州 310028
    3.华东交通大学 江西省岩土工程基础设施安全与控制重点实验室,南昌 330013
    4.杭州浙大福世德勘测设计有限公司, 杭州 310030
    5.中铁十四局集团第四工程有限公司,济南 250002
    6.浙江杭海城际铁路有限公司,浙江 嘉兴 314000
    7.江西省地下空间技术开发工程研究中心,南昌 330013
    8.华东交通大学 轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
冯国辉(1996-),男,安徽省合肥市人,博士生,主要从事土与结构相互作用方面研究.

收稿日期: 2021-03-03

  网络出版日期: 2022-05-07

基金资助

国家自然科学基金-高铁联合基金(U1934208);国家杰出青年科学基金(51725802);浙江省自然科学基金委员会-华东院联合基金(LHZ19E080001);国家自然科学基金(51878276);临近深基坑交通荷载对土体力学特征影响及围护结构安全性研究(20192ACB20001);浙江大学平衡建筑研究中心配套资金(20203512-10C)

Deflections of Adjacent Underground Tunnel Induced by Excavation Based on Kerr Foundation Model

Expand
  • 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
    3. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, East China Jiaotong University, Nanchang 330013, China
    4. Hangzhou Zhejiang University First Investigation and Design Co., Ltd., Hangzhou 310030, China
    5. Fourth Engineering Co., Ltd., China Railway 14th Bureau Group, Jinan 250002, China
    6. Zhejiang Hanghai Intercity Railway Co., Ltd., Jiaxing 314000, Zhejiang, China
    7. Engineering Research and Development Centre for Underground Technology of Jiangxi Province, Nanchang 330013, China
    8. State Key Laboratory of Performance Monitoring and Protecting of Rail TransitInfrastructure, East China Jiaotong University, Nanchang 330013, China

Received date: 2021-03-03

  Online published: 2022-05-07

摘要

基坑开挖导致的土体卸载作用会引起邻近下卧既有隧道隆起变形,甚至会干扰隧道的正常运营.提出了一种基坑开挖引起下卧隧道纵向变形的简化计算方法,将隧道简化成无限长Euler-Bernoulli梁搁置在三参数的Kerr地基模型,提出了剪切层弯矩的计算假设,利用有限差分法并结合隧道两端的边界条件得到隧道纵向变形差分解.结果表明:与既有文献中有限元数据和实测数据对比,证明了Kerr地基模型的准确性;与将隧道简化成Euler-Bernoulli梁搁置在Pasternak地基模型相比,Kerr地基模型更具有优越性.地基模量、隧道埋深的增大会引起隧道纵向位移及内力的减小;隧道刚度的增大会引起隧道纵向位移的减小但会引起隧道内力的增大.

本文引用格式

冯国辉, 徐兴, 侯世磊, 范润东, 杨开放, 管凌霄, 徐长节 . 基于Kerr地基模型的基坑开挖引起下卧既有隧道受力变形[J]. 上海交通大学学报, 2022 , 56(4) : 474 -485 . DOI: 10.16183/j.cnki.jsjtu.2021.067

Abstract

The soil unloading effect caused by the adjacent excavation will influence both the uplift and the deformation of the adjacent existing tunnel, and even interfere with the normal operation of the tunnel. A simplified calculation method for the longitudinal deformation of the underlying tunnel caused by foundation pit excavation is proposed. The tunnel is simplified into an infinitely long Euler-Bernoulli beam resting on a three-parameter Kerr foundation model. The difference method is combined with the boundary conditions at both ends of the tunnel to obtain the longitudinal deformation difference decomposition of the tunnel. The accuracy of the proposed method is proved by comparing it with the finite element simulation method and some cases study. Compared with the tunnel simplified as the Euler-Bernoulli beam which is placed upon the existing Pasternak foundation model, the Kerr foundation model has more advantages. As the elastic modulus of soil mass and the depth of tunnel axis increase, the longitudinal deflection and the inner force of the tunnel will decrease. The inner force of the tunnel will increase with the increment of the stiffness of the tunnel.

参考文献

[1] ZHANG X M, OU X F, YANG J S, et al. Deformation response of an existing tunnel to upper excavation of foundation pit and associated dewatering[J]. International Journal of Geomechanics, 2017, 17(4): 04016112.
[2] 陈仁朋, 孟凡衍, 李忠超, 等. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.
[2] CHEN Renpeng, MENG Fanyan, LI Zhongchao, et al. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5): 856-863.
[3] YONG T, YE L. Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai soft ground[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(2): 05018002.
[4] ZHENG G, YANG X Y, ZHOU H Z, et al. A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128.
[5] ZHENG G, YANG X Y, ZHOU H Z, et al. Reply to the discussion on “A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations” by Far et al[J]. Computers and Geotechnics, 2019, 109: 297.
[6] 黄宏伟, 黄栩, SCHWEIGER F H. 基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J]. 土木工程学报, 2012, 45(3): 182-189.
[6] HUANG Hongwei, HUANG Xu, SCHWEIGER F H. Numerical analysis of the influence of deep excavation on underneath existing road tunnel[J]. China Civil Engineering Journal, 2012, 45(3): 182-189.
[7] WEN X, PANG C R. Influence of foundation pit excavation on existing shield tunnel and its protection range[J]. Applied Mechanics and Materials, 2014,580- 583: 1258-1263.
[8] ZHENG G, WEI S W. Numerical analyses of influence of overlying pit excavation on existing tunnels[J]. Journal of Central South University of Technology, 2008, 15(2): 69-75.
[9] CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235.
[10] LI M G, CHEN J J, WANG J H, et al. Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 329-339.
[11] NG C W W, SUN H S, LEI G H, et al. Ability of three different soil constitutive models to predict a tunnel’s response to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1685-1698.
[12] NG C W W, SHI J W, MAŠÍN D, et al. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1811-1829.
[13] NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888.
[14] HUANG X, HUANG H W, ZHANG D M. Centrifuge modelling of deep excavation over existing tunnels[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2014, 167(1): 3-18.
[15] ZHANG J F, CHEN J J, WANG J H, et al. Prediction of tunnel displacement induced by adjacent excavation in soft soil[J]. Tunnelling and Underground Space Technology, 2013, 36: 24-33.
[16] ZHANG Z G, HUANG M S, WANG W D. Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunnelling and Underground Space Technology, 2013, 38: 244-253.
[17] LIANG R Z, WU W B, YU F, et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2018, 71: 94-105.
[18] 康成, 叶超, 梁荣柱, 等. 基坑开挖诱发下卧盾构隧道纵向非线性变形研究[J]. 岩石力学与工程学报, 2020, 39(11): 2341-2350.
[18] KANG Cheng, YE Chao, LIANG Rongzhu, et al. Nonlinear longitudinal deformation of underlying shield tunnels induced by foundation excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2341-2350.
[19] ZHANG Z, ZHANG M, ZHAO Q. A simplified analysis for deformation behavior of buried pipelines considering disturbance effects of underground excavation in soft clays[J]. Arabian Journal of Geosciences, 2015, 8(10): 7771-7785.
[20] 梁荣柱, 林存刚, 夏唐代, 等. 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, 36(1): 223-233.
[20] LIANG Rongzhu, LIN Cungang, XIA Tangdai, et al. Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 223-233.
[21] LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167-187.
[22] 应宏伟, 程康, 俞建霖, 等. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.
[22] YING Hongwei, CHENG Kang, YU Jianlin, et al. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 318-329.
[22] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092.
[22] ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092.
[23] 徐日庆, 程康, 应宏伟, 等. 考虑埋深与剪切效应的基坑卸荷下卧隧道的形变响应[J]. 岩土力学, 2020, 41(Sup.1): 195-207.
[23] XU Riqing, CHENG Kang, YING Hongwei, et al. Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect[J]. Rock and Soil Mechanics, 2020, 41(Sup.1): 195-207.
[24] MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil[D]. Thessaloniki: Aristotle University of Thessaloniki, 2003.
[25] KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: Comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
[26] 志波由纪夫, 川島一彦, 大日方尚己, 等. シールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[C]// 土木学会論文集. 日本: 土木学会論文編集委員会, 1988: 319-327.
文章导航

/