船舶海洋与建筑工程

高性能平纹织物纱线抽出力学行为及其移动机制

展开
  • 1.南京理工大学 理学院, 南京 210094
    2.上海交通大学 空间结构研究中心, 上海 200030
    3.中国人民解放军陆军工程大学 工程兵工程学院, 南京 210007
陈建稳(1981-),男,副教授,主要从事轻型建筑膜结构、浮空器膜结构及材料性能研究;E-mail: Jianwench@yeah.net.

收稿日期: 2020-12-09

  网络出版日期: 2022-05-07

基金资助

国家自然科学基金(51608270);江苏省基础研究计划(自然科学基金)(BK20191290);中央高校基本科研业务费专项资金(30920021143);中国博士后科学基金(2017T100371);中国博士后科学基金(2016M601816)

Behavior of Pull-Out and Movement Mechanisms of High-Performance Plain Weave Fabric Yarns

Expand
  • 1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
    2. Space Structures Research Center, Shanghai Jiao Tong University, Shanghai 200030,China
    3. Engineering Institute of Corps of Engineers, Army Engineering University of PLA, Nanjing 210007, China

Received date: 2020-12-09

  Online published: 2022-05-07

摘要

为探究平纹织物纱线移动响应机制,以典型平纹机织织物为对象,进行多加载工况下纱线移动行为的数值模拟,系统考察摩擦因数、模型尺寸及预应力对纱线移动响应的影响规律,进而深入探讨了抽出纱线断裂长度、抽断强度、纱线间摩擦性能及基布所受预应力间的耦合关系.结果表明:该平纹机织织物峰值抽出载荷与摩擦因数、模型尺寸及预应力呈正相关,预应力由200 MPa增至700 MPa,峰值抽出载荷提升34.49%.纱线屈曲明显时,其抽出荷载提升明显.该机织织物纱线抽断强度随预应力及摩擦因数的增加逐渐增大,摩擦因数从0.1增至0.2时,纱线抽断强度增幅达16.48%.该机织织物纱线的抽断长度与实际所处应力环境相关,应力均匀化是纱线抽断长度增加的重要因素.

本文引用格式

陈建稳, 吴善祥, 张若男, 陈务军, 范进, 王明洋 . 高性能平纹织物纱线抽出力学行为及其移动机制[J]. 上海交通大学学报, 2022 , 56(4) : 464 -473 . DOI: 10.16183/j.cnki.jsjtu.2020.419

Abstract

In order to study the movement mechanisms of plain weave fabric yarns, the numerical simulation of behavior of yarn pull-out and movement under various loading conditions was carried out on a typical plain-woven fabric. The effects of friction coefficients, model size, and pre-stress levels on yarn movement responses were analyzed in detail, and the coupling relation among pull-out length, pull-out fractured strength, and model parameter conditions, including friction coefficients and pre-stress levels were shown. The results indicate that positive correlations exist between peak pull-out loads and those main model parameters of plain weave fabrics, including the friction coefficients, model size, and pre-stress levels. As the pre-stress level rises from 200 MPa to 700 MPa, the peak pull-out load increases by 34.49%, and the existence of yarn crimps could lead to improvement of the pull-out loads. The pull-out fractured strength of yarns gradually increases with the growths of pre-stress levels and friction coefficients in the plain weave fabrics. Specifically, the pull-out fractured strength of yarns increases by 16.48% as the friction coefficient grow from 0.1 to 0.2. In addition, the pull-out fractured length of yarns of the plain-woven fabrics is highly dependent on the actual stress state, and the homogenization of the stress state is an important factor that influences the pull-out fractured length.

参考文献

[1] TABIEI A, NILAKANTAN G. Ballistic impact of dry woven fabric composites: A review[J]. Applied Mechanics Reviews, 2008, 61(1): 010801.
[2] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6): 159-165.
[2] CHEN Xiaogang. Trend of research in textile-based protective materials against ballistic and stabbing[J]. Journal of Textile Research, 2019, 40(6): 159-165.
[3] 谢婉晨. 三维机织物复合材料头盔壳体的制备及成型[D]. 武汉: 武汉纺织大学, 2017.
[3] XIE Wanchen. Study on the preparation and forming of the helmet shell with composite materials of 3D woven fabric[D]. Wuhan: Wuhan Textile University, 2017.
[4] 何业茂. 高性能纤维增强树脂基复合材料防弹装甲的研究[D]. 天津: 天津工业大学, 2017.
[4] HE Yemao. Research on bulletproof armor of high-performance reinforced resin matrix composite[D]. Tianjin: Tianjin Polytechnic University, 2017.
[5] 裴鹏英, 胡雨, 胡慧娜, 等. 柔性防弹防刺服开发关键技术[J]. 纺织导报, 2017, 10: 62-65.
[5] PEI Pengying, HU Yu, HU Huina, et al. Key technologies for developing flexible bullet-proof/stabresistant body armor[J]. China Textile Leader, 2017, 10: 62-65.
[6] 王彦广, 李健全, 李勇, 等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007, 16(1): 50-57.
[6] WANG Yanguang, LI Jianquan, LI Yong, et al. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007, 16(1): 50-57.
[7] 顾正铭. 平流层飞艇蒙皮材料的研究[J]. 航天返回与遥感, 2007, 28(1): 62-66.
[7] GU Zhengming. Research of stratospheric airships’ skin material[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(1): 62-66.
[8] NILAKANTAN G, GILLESPIE J W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects[J]. Composite Structures, 2012, 94(12): 3624-3634.
[9] PAN N, YOON M Y. Behavior of yarn pullout from woven fabrics: Theoretical and experimental[J]. Textile Research Journal, 1993, 63(11): 629-637.
[10] DONG Z X, SUN C T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1863-1869.
[11] YANG Y F, CHEN X G. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017, 164: 1-9.
[12] NILAKANTAN G, MERRILL R L, KEEFE M, et al. Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of Kevlar fabrics[J]. Composites Part B: Engineering, 2015, 68: 215-229.
[13] WANG Y Q, MIAO Y Y, HUANG L J, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78.
[14] HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 263-271.
[15] SEBASTIAN S A, BAILEY A I, BRISCOE B J, et al. Effect of a softening agent on yarn pull-out force of a plain weave fabric[J]. Textile Research Journal, 1986, 56(10): 604-611.
[16] SEBASTIAN S D, BAILEY A I, BRISCOE B J, et al. Extensions, displacements and forces associated with pulling a single yarn from a fabric[J]. Journal of Physics D: Applied Physics, 1987, 20(1): 130-139.
[17] MOTAMEDI F, BAILEY A I, BRISCOE B J, et al. Theory and practice of localized fabric deformations[J]. Textile Research Journal, 1989, 59(3): 160-172.
[18] MARTÍNEZ M A, NAVARRO C, CORTÉS R, et al. Friction and wear behaviour of Kevlar fabrics[J]. Journal of Materials Science, 1993, 28(5): 1305-1311.
[19] BAZHENOV S. Dissipation of energy by bulletproof aramid fabric[J]. Journal of Materials Science, 1997, 32(15): 4167-4173.
[20] NILAKANTAN G, GILLESPIE J W . Yarn pull-out behavior of plain woven Kevlar fabrics: Effect of yarn sizing, pullout rate, and fabric pre-tension[J]. Composite Structures, 2013, 101: 215-224.
[21] BILISIK K, YILDIRIM B. Properties of stick-slip stage of yarn pull-out in Para-aramid woven fabric[J]. Fibers and Polymers, 2013, 14(4): 630-638.
[22] YANG Y F, CHEN X G. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017, 174: 233-243.
[23] 李帅, 陈永霖, 肖畅, 等. 平流层飞艇蒙皮复合织物材料撕裂性能研究[J]. 合肥工业大学学报, 2020, 43(11): 1456-1462.
[23] LI Shuai, CHEN Yonglin, XIAO Chang, et al. Study on tear properties of composite fabric materials for stratospheric airship envelope[J]. Journal of Hefei University of Technology, 2020, 43(11): 1456-1462.
[24] 朱德举, 欧云福. 标距和应变率对Kevlar 49单束拉伸力学性能的影响[J]. 复合材料学报, 2016, 33(2): 225-233.
[24] ZHU Deju, OU Yunfu. Effects of gauge length and strain rate on tensile mechanical properties of Kevlar 49 single yarn[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 225-233.
[25] ZHU D J, SORANAKOM C, MOBASHER B, et al. Experimental study and modeling of single yarn pull-out behavior of Kevlar© 49 fabric[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 868-879.
文章导航

/