高性能平纹织物纱线抽出力学行为及其移动机制
收稿日期: 2020-12-09
网络出版日期: 2022-05-07
基金资助
国家自然科学基金(51608270);江苏省基础研究计划(自然科学基金)(BK20191290);中央高校基本科研业务费专项资金(30920021143);中国博士后科学基金(2017T100371);中国博士后科学基金(2016M601816)
Behavior of Pull-Out and Movement Mechanisms of High-Performance Plain Weave Fabric Yarns
Received date: 2020-12-09
Online published: 2022-05-07
为探究平纹织物纱线移动响应机制,以典型平纹机织织物为对象,进行多加载工况下纱线移动行为的数值模拟,系统考察摩擦因数、模型尺寸及预应力对纱线移动响应的影响规律,进而深入探讨了抽出纱线断裂长度、抽断强度、纱线间摩擦性能及基布所受预应力间的耦合关系.结果表明:该平纹机织织物峰值抽出载荷与摩擦因数、模型尺寸及预应力呈正相关,预应力由200 MPa增至700 MPa,峰值抽出载荷提升34.49%.纱线屈曲明显时,其抽出荷载提升明显.该机织织物纱线抽断强度随预应力及摩擦因数的增加逐渐增大,摩擦因数从0.1增至0.2时,纱线抽断强度增幅达16.48%.该机织织物纱线的抽断长度与实际所处应力环境相关,应力均匀化是纱线抽断长度增加的重要因素.
陈建稳, 吴善祥, 张若男, 陈务军, 范进, 王明洋 . 高性能平纹织物纱线抽出力学行为及其移动机制[J]. 上海交通大学学报, 2022 , 56(4) : 464 -473 . DOI: 10.16183/j.cnki.jsjtu.2020.419
In order to study the movement mechanisms of plain weave fabric yarns, the numerical simulation of behavior of yarn pull-out and movement under various loading conditions was carried out on a typical plain-woven fabric. The effects of friction coefficients, model size, and pre-stress levels on yarn movement responses were analyzed in detail, and the coupling relation among pull-out length, pull-out fractured strength, and model parameter conditions, including friction coefficients and pre-stress levels were shown. The results indicate that positive correlations exist between peak pull-out loads and those main model parameters of plain weave fabrics, including the friction coefficients, model size, and pre-stress levels. As the pre-stress level rises from 200 MPa to 700 MPa, the peak pull-out load increases by 34.49%, and the existence of yarn crimps could lead to improvement of the pull-out loads. The pull-out fractured strength of yarns gradually increases with the growths of pre-stress levels and friction coefficients in the plain weave fabrics. Specifically, the pull-out fractured strength of yarns increases by 16.48% as the friction coefficient grow from 0.1 to 0.2. In addition, the pull-out fractured length of yarns of the plain-woven fabrics is highly dependent on the actual stress state, and the homogenization of the stress state is an important factor that influences the pull-out fractured length.
Key words: plain weave fabrics; yarn pull-out; movement; breakage; friction coefficient
[1] | TABIEI A, NILAKANTAN G. Ballistic impact of dry woven fabric composites: A review[J]. Applied Mechanics Reviews, 2008, 61(1): 010801. |
[2] | 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6): 159-165. |
[2] | CHEN Xiaogang. Trend of research in textile-based protective materials against ballistic and stabbing[J]. Journal of Textile Research, 2019, 40(6): 159-165. |
[3] | 谢婉晨. 三维机织物复合材料头盔壳体的制备及成型[D]. 武汉: 武汉纺织大学, 2017. |
[3] | XIE Wanchen. Study on the preparation and forming of the helmet shell with composite materials of 3D woven fabric[D]. Wuhan: Wuhan Textile University, 2017. |
[4] | 何业茂. 高性能纤维增强树脂基复合材料防弹装甲的研究[D]. 天津: 天津工业大学, 2017. |
[4] | HE Yemao. Research on bulletproof armor of high-performance reinforced resin matrix composite[D]. Tianjin: Tianjin Polytechnic University, 2017. |
[5] | 裴鹏英, 胡雨, 胡慧娜, 等. 柔性防弹防刺服开发关键技术[J]. 纺织导报, 2017, 10: 62-65. |
[5] | PEI Pengying, HU Yu, HU Huina, et al. Key technologies for developing flexible bullet-proof/stabresistant body armor[J]. China Textile Leader, 2017, 10: 62-65. |
[6] | 王彦广, 李健全, 李勇, 等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007, 16(1): 50-57. |
[6] | WANG Yanguang, LI Jianquan, LI Yong, et al. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007, 16(1): 50-57. |
[7] | 顾正铭. 平流层飞艇蒙皮材料的研究[J]. 航天返回与遥感, 2007, 28(1): 62-66. |
[7] | GU Zhengming. Research of stratospheric airships’ skin material[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(1): 62-66. |
[8] | NILAKANTAN G, GILLESPIE J W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects[J]. Composite Structures, 2012, 94(12): 3624-3634. |
[9] | PAN N, YOON M Y. Behavior of yarn pullout from woven fabrics: Theoretical and experimental[J]. Textile Research Journal, 1993, 63(11): 629-637. |
[10] | DONG Z X, SUN C T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1863-1869. |
[11] | YANG Y F, CHEN X G. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017, 164: 1-9. |
[12] | NILAKANTAN G, MERRILL R L, KEEFE M, et al. Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of Kevlar fabrics[J]. Composites Part B: Engineering, 2015, 68: 215-229. |
[13] | WANG Y Q, MIAO Y Y, HUANG L J, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78. |
[14] | HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 263-271. |
[15] | SEBASTIAN S A, BAILEY A I, BRISCOE B J, et al. Effect of a softening agent on yarn pull-out force of a plain weave fabric[J]. Textile Research Journal, 1986, 56(10): 604-611. |
[16] | SEBASTIAN S D, BAILEY A I, BRISCOE B J, et al. Extensions, displacements and forces associated with pulling a single yarn from a fabric[J]. Journal of Physics D: Applied Physics, 1987, 20(1): 130-139. |
[17] | MOTAMEDI F, BAILEY A I, BRISCOE B J, et al. Theory and practice of localized fabric deformations[J]. Textile Research Journal, 1989, 59(3): 160-172. |
[18] | MARTÍNEZ M A, NAVARRO C, CORTÉS R, et al. Friction and wear behaviour of Kevlar fabrics[J]. Journal of Materials Science, 1993, 28(5): 1305-1311. |
[19] | BAZHENOV S. Dissipation of energy by bulletproof aramid fabric[J]. Journal of Materials Science, 1997, 32(15): 4167-4173. |
[20] | NILAKANTAN G, GILLESPIE J W . Yarn pull-out behavior of plain woven Kevlar fabrics: Effect of yarn sizing, pullout rate, and fabric pre-tension[J]. Composite Structures, 2013, 101: 215-224. |
[21] | BILISIK K, YILDIRIM B. Properties of stick-slip stage of yarn pull-out in Para-aramid woven fabric[J]. Fibers and Polymers, 2013, 14(4): 630-638. |
[22] | YANG Y F, CHEN X G. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017, 174: 233-243. |
[23] | 李帅, 陈永霖, 肖畅, 等. 平流层飞艇蒙皮复合织物材料撕裂性能研究[J]. 合肥工业大学学报, 2020, 43(11): 1456-1462. |
[23] | LI Shuai, CHEN Yonglin, XIAO Chang, et al. Study on tear properties of composite fabric materials for stratospheric airship envelope[J]. Journal of Hefei University of Technology, 2020, 43(11): 1456-1462. |
[24] | 朱德举, 欧云福. 标距和应变率对Kevlar 49单束拉伸力学性能的影响[J]. 复合材料学报, 2016, 33(2): 225-233. |
[24] | ZHU Deju, OU Yunfu. Effects of gauge length and strain rate on tensile mechanical properties of Kevlar 49 single yarn[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 225-233. |
[25] | ZHU D J, SORANAKOM C, MOBASHER B, et al. Experimental study and modeling of single yarn pull-out behavior of Kevlar© 49 fabric[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 868-879. |
/
〈 |
|
〉 |