新型电力系统与综合能源

基于证据推理规则CS-SVR模型的锂离子电池SOH估算

展开
  • 1.武汉理工大学 能源与动力工程学院,武汉 430063
    2.杭州电子科技大学 自动化学院,杭州 310018
徐宏东(1995-),男,山东省日照市人,硕士生,从事船舶电力推进健康状态管理研究.

收稿日期: 2021-09-13

  网络出版日期: 2022-05-07

基金资助

国家自然科学基金项目(U1709215);国家水运安全工程技术研究中心开放基金(A2019003);新能源船舶设计研发及应用示范关键技术研究(19DZ1203100)

State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule

Expand
  • 1. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
    2. Institute of System Science and Control Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Received date: 2021-09-13

  Online published: 2022-05-07

摘要

锂离子电池健康状态(SOH)的准确性影响电池的安全性和使用寿命.针对锂离子电池SOH估算问题,提出一种基于证据推理(ER)规则的布谷鸟搜索支持向量回归(CS-SVR)的SOH估算模型,并利用NASA Ames研究中心的锂离子电池数据集进行SOH估算试验.该方法以电池放电循环的平均放电电压和平均放电温度为模型输入,利用ER规则进行推理,得到输入数据的融合信度矩阵.将该矩阵输入CS算法优化的SVR模型得到电池SOH估算结果.结果表明,与5种估算效果较好的现有模型相比,基于ER规则的CS-SVR模型具有更良好的估算性能.

本文引用格式

徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴 . 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022 , 56(4) : 413 -421 . DOI: 10.16183/j.cnki.jsjtu.2021.345

Abstract

The state of health (SOH) estimation accuracy of lithium-ion battery affects the safety and service life of batteries. Aimed at the problem in SOH estimation of lithium-ion battery, a cuckoo search support vector regression (CS-SVR) model based on the evidence reasoning (ER) rule was proposed for SOH estimation. The lithium-ion battery data from NASA Ames Center was used to perform the SOH estimation test. In this method, the average voltage and average temperature of battery discharge cycles were taken as model input, and a fusion belief degree matrix of input data was obtained by the ER rule. The SOH estimation result of the battery was obtained by inputting a fusion belief degree matrix into the SVR model optimized by the CS algorithm. The results show that the CS-SVR algorithm based on the ER rule has a better estimation performance than the five existing models.

参考文献

[1] MISYRIS G S, MARINOPOULOS A, DOUKAS D I, et al. On battery state estimation algorithms for electric ship applications[J]. Electric Power Systems Research, 2017, 151: 115-124.
[2] XU D P, WANG L F, YANG J. Research on Li-ion battery management system [C]//2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010: 4106-4109.
[3] MA G J, YU C H, HE Z W, et al. Estimation of Li-ion battery SOH using Fletcher-Reeves based ANFIS [C]//2015 IEEE 24th International Symposium on Industrial Electronics. Buzios, Brazil: IEEE, 2015: 827-830.
[4] LOTFI N, LI J, LANDERS R G, et al. Li-ion battery state of health estimation based on an improved single particle model [C]//2017 American Control Conference. Seattle, USA: IEEE, 2017: 86-91.
[5] BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587.
[6] 张新锋, 饶勇翔, 姚蒙蒙. 基于支持向量回归的锂电池健康状态估计[J]. 中北大学学报(自然科学版), 2019, 40(6): 511-516.
[6] ZHANG Xinfeng, RAO Yongxiang, YAO Mengmeng. Estimation of lithium battery state of health based on support vector regression[J]. Journal of North University of China (Natural Science Edition), 2019, 40(6): 511-516.
[7] QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH moni-toring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191.
[8] YANG D, WANG Y J, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227: 273-283.
[9] ZENG M M, ZHANG P, YANG Y, et al. SOC and SOH joint estimation of the power batteries based on fuzzy unscented Kalman filtering algorithm[J]. Energies, 2019, 12(16): 3122.
[10] CHANG C, WANG Q Y, JIANG J C, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38: 102570.
[11] CHENG G, WANG X Z, HE Y R. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021, 232: 121022.
[12] WENG C H, SUN J, PENG H E. Model parametrization and adaptation based on the invariance of support vectors with applications to battery state-of-health monitoring[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 3908-3917.
[13] 刘皓, 胡明昕, 朱一亨, 等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(3): 329-334.
[13] LIU Hao, HU Mingxin, ZHU Yiheng, et al. Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(3): 329-334.
[14] NG S S Y, XING Y J, TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy, 2014, 118: 114-123.
[15] WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643.
[16] XU X B, JIN Z, YANG J B, et al. Track irregularity fault identification based on evidence reasoning rule [C]//2016 IEEE International Conference on Intelligent Rail Transportation. Birmingham, UK: IEEE, 2016: 298-306.
[17] XU X B, ZHANG Z, ZHENG J, et al. State estimation method based on evidential reasoning rule [C]//2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China: IEEE, 2015: 610-617.
[18] GAO H B, LIAO L H, HE Y L, et al. Improved control of propeller ventilation using an evidence reasoning rule based Adaboost.M1 approach[J]. Ocean Engineering, 2020, 209: 107329.
[19] GHAZVINIAN H, MOUSAVI S F, KARAMI H, et al. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction[J]. PLoS One, 2019, 14(5): e0217634.
[20] YANG Y F, ZHANG M H, DAI Y W. A Fuzzy Comprehensive CS-SVR Model-based health status evaluation of radar[J]. PLoS One, 2019, 14(3): e0213833.
[21] NI K S, NGUYEN T Q. Image superresolution using support vector regression[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.
[22] YANG X S, DEB S. Multiobjective cuckoo search for design optimization[J]. Computers & Operations Research, 2013, 40(6): 1616-1624.
[23] NARTU T R, MATTA M S, KORATANA S, et al. A fuzzified Pareto multiobjective cuckoo search algorithm for power losses minimization incorporating SVC[J]. Soft Computing, 2019, 23(21): 10811-10820.
[24] CHENG J T, WANG L, XIONG Y. Ensemble of cuckoo search variants[J]. Computers & Industrial Engineering, 2019, 135: 299-313.
[25] SAHA B, GOEBEL K. Battery data set[R]. California: NASA Ames Prognostics Data Repository, 2007.
[26] QIN T C, ZENG S K, GUO J B. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability, 2015, 55(9/10): 1280-1284.
[27] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. Journal of machine Learning Research, 2011, 12: 2825-2830.
[28] ZHAO F J, ZHOU Z J, HU C H, et al. A new safety assessment method based on evidential reasoning rule with a prewarning function[J]. IEEE Access, 2018, 6: 31862-31871.
[29] LIAO L H, GAO H B, HE Y L, et al. Fault diagnosis of capacitance aging in DC link capacitors of voltage source inverters using evidence reasoning rule[J]. Mathematical Problems in Engineering, 2020, 2020: 1-12.
文章导航

/