新型电力系统与综合能源

海上风电经柔性直流并网技术标准对比分析

展开
  • 1.广东电网有限责任公司 电网规划研究中心, 广州 510080
    2.上海交通大学 电子信息与电气工程学院, 上海 200240
余 浩(1986-),男,湖北省黄冈市人,硕士,高级工程师,从事电网规划、系统仿真及新能源并网技术研究.电话(Tel.):020-85121441;E-mail: yuhao1235813@163.com.

收稿日期: 2021-06-30

  网络出版日期: 2022-05-07

基金资助

广东电网公司规划专题项目(031000QQ00200002);国家重点研发计划(2019YFE0114700)

Comparative Analysis of Technical Standards for Offshore Wind Power via VSC-HVDC

Expand
  • 1. Grid Planning and Research Center, Guangdong Power Grid Corporation of China Southern Power Grid Co., Ltd., Guangzhou 510080, China
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-06-30

  Online published: 2022-05-07

摘要

对国内外海上风电经柔性直流并网标准的现状进行介绍,选取具有代表性的海上风电经柔性直流并网标准,从功率控制、故障穿越、电能质量、稳定性等几个方面进行对比,分析海上风电经柔性直流并网标准的发展趋势.对中国海上风电经柔性直流并网标准的制修订提供合理建议,以促进海上风电行业的发展.

本文引用格式

余浩, 张哲萌, 彭穗, 张志强, 任万鑫, 黎灿兵 . 海上风电经柔性直流并网技术标准对比分析[J]. 上海交通大学学报, 2022 , 56(4) : 403 -412 . DOI: 10.16183/j.cnki.jsjtu.2021.465

Abstract

This paper introduces the current situation of domestic and foreign offshore wind power grid-connected via voltage source converter based high voltage direct current(VSC-HVDC) transmission standards, and selects representative standards of offshore wind power grid-connected via VSC-HVDC. It also compares the domestic and foreign offshore wind power grid in terms of power control, fault ride-through, power quality, stability, etc., and analyzes the development trend of offshore wind power grid-connected via VSC-HVDC standards. In order to promote the development of offshore wind power industry, it provides reasonable suggestions for the formulation and revision of Chinese offshore wind power grid-connected via VSC-HVDC standards.

参考文献

[1] 刘振亚. 实现碳达峰、碳中和的根本途径[J]. 电力设备管理, 2021(3): 20-23.
[1] LIU Zhenya. The fundamental way to achieve carbon peak and carbon neutrality[J]. Electric Power Equipment Management, 2021(3): 20-23.
[2] 童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49(5): 1-6.
[2] TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1-6.
[3] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466.
[3] WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(31): 5459-5466.
[4] 卫晓辉, 王锡凡, 孟永庆, 等. 分频风电系统风机并网实验研究[J]. 中国电机工程学报, 2015, 35(5): 1089-1096.
[4] WEI Xiaohui, WANG Xifan, MENG Yongqing, et al. Experiment on grid connection of wind turbines in fractional frequency wind power generation system[J]. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(5): 1089-1096.
[5] 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57(22): 55-62.
[5] WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57(22): 55-62.
[6] 袁兆祥, 仇卫东, 齐立忠. 大型海上风电场并网接入方案研究[J]. 电力建设, 2015, 36(4): 123-128.
[6] YUAN Zhaoxiang, QIU Weidong, QI Lizhong. Grid connected solution for large offshore wind farm[J]. Electric Power Construction, 2015, 36(4): 123-128.
[7] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17.
[7] TANG Guangfu, LUO Xiang, WEI Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2013, 33(10): 8-17.
[8] HUANG Zhiqiu, CHEN Bing, ZHOU Min. Offshore wind power transmission engineering and application [M]. Beijing: China Water Power Press, 2016.
[9] 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55-71.
[9] LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53(7): 55-71.
[10] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
[10] WEN Yunfeng, YANG Weifeng, LIN Xiaohuang. Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020, 40(9): 211-222.
[11] 王伟胜. 我国新能源消纳面临的挑战与思考[J]. 新能源科技, 2020(12): 30-32.
[11] WANG Weisheng. Challenges and thoughts on the consumption of new energy in China[J]. New Energy Technology, 2020(12): 30-32.
[12] 何国庆, 王伟胜, 刘纯, 等. 分布式电源并网技术标准研究[J]. 中国电力, 2020, 53(4): 1-12.
[12] HE Guoqing, WANG Weisheng, LIU Chun, et al. Study on technical standard of distributed resources grid integration[J]. Electric Power, 2020, 53(4): 1-12.
[13] Institute of Electrical and Electronics Engineers. IEEE guide for establishing basic requirements for high-voltage direct-current transmission protection and control equipment: IEEE Std 1899-2017[S]. Switzerland: ISO, 2017: 1-20.
[14] Deutsches Institut für Normung. Technical requirements for the connection and operation of customer installations to the high voltage network: VDE-AR-N 4120: 2018-11[S] USA: ISO, 2018: 1-15.
[15] Economic Commission of Europe Regulation. Establishing a network code on requirements for grid connection of high voltage direct current systems and direct current-connected power park modules, Commission Regulation 2016/1447[S]. European Union: ISO, 2016: 1-85.
[16] 中国国家标准化管理委员会. 风电场接入电力系统技术规定: GB/T 19963—2011[S]. 北京: 中国标准出版社, 2012.
[16] Standardization Administration of the People’s Republic of China. Technical rule for connecting wind farm to power system: GB/T 19963—2011[S]. Beijing: Standards Press of China, 2012.
[17] 中国国家标准化管理委员会. 风力发电机组—故障电压穿越能力测试规程: GB/T 36995—2018[S]. 北京: 中国标准出版社, 2019.
[17] Standardization Administration of the People’s Republic of China. Wind turbines—Test procedure of voltage fault ride through capability: GB/T 36995—2018[S]. Beijing: Standards Press of China, 2019.
[18] 国家标准化管理委员会. 电能质量电压波动和闪变: GB/T 12326—2008[S]. 北京: 中国标准出版社, 2009.
[18] Standardization Administration of the People’s Republic of China. Power quality—Voltage fluctuation and flicker: GB/T 12326—2008[S]. Beijing: Standards Press of China, 2009.
[19] Institute of Electrical and Electronics Engineers. IEEE recommended practice and requirements for harmonic control in electric power systems: IEEE Std 519-2014[S]. Switzerland: ISO, 2014: 1-32.
[20] 王子江, 李琼林, 唐钰政, 等. 国内外谐波限值标准综述及展望[C]// 第九届电能质量研讨会论文集. 南京: 全国电压电流等级和频率标准化技术委员会, 2018: 73-90.
[20] WANG Zijiang, LI Qionglin, TANG Yuzheng, et al. Review and prospect of domestic and overseas harmonic limit value standards[C]// Proceedings of the Ninth Workshop on Power Quality. Nanjing: National Technical Committee for Standardization of Voltage and Current Levels and Frequency, 2018: 73-90.
[21] 国家技术监督局. 电能质量公用电网谐波: GB/T 14549—1993[S]. 北京: 中国标准出版社, 1994.
[21] State Bureau of Quality and Technical Supervision of the People's Republic of China. Quality of electric energy supply-Harmonics in public supply network: GB/T 14549—1993[S]. Beijing: Standards Press of China, 1994.
[22] 国家电网有限公司. 海上风电场接入电网技术规定: QGDW11410-2015 [S]. 北京: 中国电力出版社, 2014.
[22] State Grid of Corporation of China. Technical rule for connecting offshore wind farm into power grid: QGDW11410-2015[S]. Beijing: China Electric Power Press, 2014.
[23] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372.
[23] XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36(9): 2366-2372.
[24] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20-27.
[24] CHEN Guoping, LI Mingjie, XU Tao, et al. Study on technical bottleneck of new energy development[J]. Proceedings of the Chinese Society for Electrical Engineering, 2017, 37(1): 20-27.
[25] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060.
[25] WANG Weisheng, ZHANG Chong, HE Guoqing, et al. Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060.
[26] 唐欣, 张武其, 曾祥君. 柔性直流输电系统的谐振问题及主动抑制方法[J]. 中国电机工程学报, 2014, 34(30): 5352-5359.
[26] TANG Xin, ZHANG Wuqi, ZENG Xiangjun. Resonance problem analysis and active suppression method for VSC-HVDC transmission system[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(30): 5352-5359.
[27] 尹聪琦, 谢小荣, 刘辉, 等. 柔性直流输电系统振荡现象分析与控制方法综述[J]. 电网技术, 2018, 42(4): 1117-1123.
[27] YIN Congqi, XIE Xiaorong, LIU Hui, et al. Analysis and control of the oscillation phenomenon in VSC-HVDC transmission system[J]. Power System Technology, 2018, 42(4): 1117-1123.
[28] 赵大伟, 马进, 钱敏慧, 等. 海上风电场经交流电缆送出系统的无功配置与协调控制策略[J]. 电网技术, 2017, 41(5): 1412-1421.
[28] ZHAO Dawei, MA Jin, QIAN Minhui, et al. Reactive power configuration and coordinated control of offshore wind farms connected to power grid with AC cables[J]. Power System Technology, 2017, 41(5): 1412-1421.
[29] 孙蔚, 姚良忠, 李琰, 等. 考虑大规模海上风电接入的多电压等级直流电网运行控制策略研究[J]. 中国电机工程学报, 2015, 35(4): 776-785.
[29] SUN Wei, YAO Liangzhong, LI Yan, et al. Study on operation control strategies of DC grid with multi-voltage level considering large offshore wind farm grid integration[J]. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(4): 776-785.
[30] 闫家铭, 毕天姝, 胥国毅, 等. 海上风电经VSC-HVDC并网改进频率控制策略[J]. 华北电力大学学报(自然科学版), 2021, 48(2): 11-19.
[30] YAN Jiaming, BI Tianshu, XU Guoyi, et al. An improved frequency control strategy for offshore wind farm connected by VSC-HVDC[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(2): 11-19.
[31] 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120.
[31] MA Jin, ZHAO Dawei, QIAN Minhui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41(10): 3112-3120.
[32] 乐波, 赵峥, 田园园. 海上风电怎样迈向深水远海?关键要有这项并网技术[N]. 国家电网报, 2020-11-18(8).
[32] LE Bo, ZHAO Zheng, TIAN Yuanyuan. How to move offshore wind power to deep water and far sea? The key is this grid-connected technology[N]. State Grid News. 2020-11-18(8).
[33] 国网经济技术研究院有限公司. 柔性直流并网技术助力海上风电迈向深水远海[N]. 中国能源报, 2020-11-17(1).
[33] State Grid Economic and Technological Research Institute Co., Ltd. Flexible DC grid-connected technology helps offshore wind power move into deep water and offshore [N]. China Energy News, 2020-11-17(1).
[34] 刘文, 杨慧霞, 祝斌. 智能电网技术标准体系研究综述[J]. 电力系统保护与控制, 2012, 40(10): 120-126.
[34] LIU Wen, YANG Huixia, ZHU Bin. Review of research on smart grid technical standard system[J]. Power System Protection and Control, 2012, 40(10): 120-126.
[35] 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53(7): 8-17.
[35] SHI Zhiyong, WANG Caixia, LI Qionghui. Key issues of China’s offshore wind power development in the “14th five-year plan”[J]. Electric Power, 2020, 53(7): 8-17.
[36] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
[36] LIU Jizhen, MA Lifei, WANG Qinghua, et al. Offshore wind power supports China’s energy transition[J]. Strategic Study of Chinese Academy of Engineering, 2021, 23(1): 149-159.
[37] 刘吉臻, 马利飞, 王庆华, 等. 碳中和来了, 海上风电发展前景分析[N]. 全国能源信息平台, 2021-02-25(1).
[37] LIU Jizhen, MA Lifei, WANG Qinghua, et al. Carbon neutrality is coming, Analysis of offshore wind development prospects[N]. China Energy Information Platform, 2021-02-25(1).
[38] 王姗姗, 孙华东, 易俊, 等. 电力系统安全稳定相关标准对大电网的适用性综述[J]. 电网技术, 2013, 37(11): 3144-3150.
[38] WANG Shanshan, SUN Huadong, YI Jun, et al. A survey on applicability of guide or code related to power system security and stability for large-scale power grid[J]. Power System Technology, 2013, 37(11): 3144-3150.
文章导航

/