不同增压方式对火箭燃料贮箱冷氦增压效果的影响
收稿日期: 2020-08-25
网络出版日期: 2022-04-01
基金资助
上海航天先进技术联合研究基金项目(USCAST2019-4)
Influence of Pressurization Methods on Cryogenic Helium Pressurization in Rocket Fuel Tank
Received date: 2020-08-25
Online published: 2022-04-01
针对液氧/煤油火箭燃料贮箱采用的冷氦增压方案,搭建试验系统并进行地面模拟试验.探究不同增压方式,包括增压位置、扩散器形式和增压气体流量对增压排液过程的控压稳定性、贮箱气枕区温度分布、氦气消耗率、气液混合以及液体结冰状态的影响.结果表明:与气枕区增压相比,气体在液体区增压时换热充分,同等条件下气体消耗率降低33.1%,但控压稳定性较差;扩散器形式对气体消耗率和贮箱气枕区温度分布影响不大;小流量增压更加节约氦气,与40 L/s排液相比,10 L/s排液可以节约20%氦气;各工况中均未发现液体介质局部过冷结冰现象,且无气泡随液体进入排液管路.试验结果验证了煤油贮箱采用冷氦增压方案的可行性,并为箭上冷氦增压系统的结构设计和工况调节提供参考.
邹震峰, 任枫, 李晓慈, 段海洋, 杜海浪, 黄永华 . 不同增压方式对火箭燃料贮箱冷氦增压效果的影响[J]. 上海交通大学学报, 2022 , 56(3) : 386 -394 . DOI: 10.16183/j.cnki.jsjtu.2020.265
To verify the technical scheme of cryogenic helium pressurization in the fuel tank of liquid oxygen (LOX)-kerosene rocket, a test device was established and the ground simulation test was conducted. The influences of different pressurization methods on pressure control stability, ullage temperature distribution in tank, helium consumption, gas-liquid mixture, and liquid freezing of pressurized drainage process were investigated. The pressurization method specifically includes pressurization outlet position, diffuser form, and pressurant flow rate. The results show that when pressurized from the liquid zone, the heat exchange of pressurized gas is more sufficient, which reduced the gas consumption by 33.1% compared with that in the ullage zone. However, the stability of pressure control is less satisfying. The form of diffuser has little influence on the gas consumption and the temperature distribution of ullage. The helium consumption for pressurization at a small flow rate is less than that at a high flow rate. For example, when the drainage flow is 10 L/s, the helium consumption can be reduced by 20% compared with that at 40 L/s. Under all experimental conditions, neither ice due to local supercooling in the tank nor bubbles in the drainage pipeline are observed. The test results verify the feasibility of the proposed scheme, and provide a reference for structural design and working condition regulation of the cryogenic helium pressurization system in rocket.
[1] | 张福忠. 冷氦增压系统的研制[J]. 低温工程, 1996(4):6-12. |
[1] | ZHANG Fuzhong. Development of cold helium pressurization system[J]. Cryogenics, 1996(4):6-12. |
[2] | NAGAI H, NODA K, YAMAZAKI I, et al. Status of H-II rocket first stage propulsion system[J]. Journal of Propulsion and Power, 1992, 8(2):313-319. |
[3] | DUSSOLLIER G, TEISSIER A. Ariane 5 main stage oxygen tank pressurization[C]// 29th Joint Propulsion Conference and Exhibit. Reston, Virginia, USA: AIAA, 1993: 1-10. |
[4] | STOCHL R J, MASTERS P A, DEWITT R L, et al. Gaseous-hydrogen requirements for the discharge of liquid hydrogen from a 1.52-meter-(5-ft-) diameter spherical tank[EB/OL]. (1996-08-01)[2020-08-25]. https://ntrs.nasa.gov/citations/19690022940 |
[5] | STOCHL R J, MASTERS P A, DEWITT R L, et al. Gaseous-hydrogen pressurant requirements for the discharge of liquid hydrogen from a 3.96-meter-(13-ft-) diameter spherical tank[EB/OL]. (1969-08-01)[2020-08-25]. https://ntrs.nasa.gov/citations/19690023833 |
[6] | STOCHL R J, MALOY J E, MASTERS P A, et al. Gaseous-helium requirements for the discharge of li-quid hydrogen from a 1.52-meter-(5-ft-) diameter spherical tank[EB/OL]. (1970-01-01)[2020-08-25]. https://ntrs.nasa.gov/citations/19700007064 |
[7] | STOCHL R J, MALOY J E, MASTERS P A, et al. Gaseous-helium requirements for the discharge of li-quid hydrogen from a 3.96-meter-(13-ft-) diameter spherical tank[EB/OL]. (1970-12-01)[2020-08-25]. https://ntrs.nasa.gov/citations/19710004571 |
[8] | STOCHL R J, VAN DRESER N T, LACOVIC R F. Autogenous pressurization of cryogenic vessels using submerged vapor injection[M]// Advances in cryogenic engineering. Berlin, Germany: Springer, 1992. |
[9] | DEWITT R L, STOCHL R J, JOHNSON W R. Experimental evaluation of pressurant gas injectors during the pressurized discharge of liquid hydrogen[EB/OL]. (1966-06-01) [2020-08-25]. https://ntrs.nasa.gov/citations/19660017895 |
[10] | 曾源华. 20.4 K冷氦加温及氧箱的模拟增压试验技术[J]. 低温工程, 1994(4):10-15. |
[10] | ZENG Yuanhua. Heating test and simulated oxygen tank pressurization test technique of 20.4 K low temperature helium gas in the LH2/LO2 engine testing process[J]. Cryogenics, 1994(4):10-15. |
[11] | 张志广, 杜正刚, 刘茉. 液体火箭冷氦增压系统低温试验研究[J]. 低温工程, 2013(2):60-63. |
[11] | ZHANG Zhiguang, DU Zhenggang, LIU Mo. Experimental study on cryogenic helium pressurization system[J]. Cryogenics, 2013(2):60-63. |
[12] | 赵耀中, 王森, 郑然, 等. 某液氢温区氦气加温换热系统设计与模拟试验[J]. 低温工程, 2013(6):44-47. |
[12] | ZHAO Yaozhong, WANG Sen, ZHENG Ran, et al. Design and testing of a helium-nitrogen gas heat-exchanger system at liquid-hydrogen temperature[J]. Cryogenics, 2013(6):44-47. |
[13] | 范瑞祥, 黄兵, 田玉蓉. 高温气体增压对液氧贮箱壁面温度影响研究[J]. 导弹与航天运载技术, 2013(5):76-81. |
[13] | FAN Ruixiang, HUANG Bing, TIAN Yurong. Study of the effect of high-temperature gas pressurization on LOX tank wall temperature[J]. Missiles and Space Vehicles, 2013(5):76-81. |
[14] | 周芮, 程光平, 张浩, 等. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3):965-973. |
[14] | ZHOU Rui, CHENG Guangping, ZHANG Hao, et al. Numerical investigation on cold helium pressurization process in kerosene tank[J]. CIESC Journal, 2020, 71(3):965-973. |
[15] | 邹震峰, 任枫, 程光平, 等. 冷氦直接增压排放推进剂试验系统的研制及性能调试[J]. 低温工程, 2020(3):5-10. |
[15] | ZOU Zhenfeng, REN Feng, CHENG Guangping, et al. Development and test of a propellant draining system by using pressurized cryogenic helium gas[J]. Cryogenics, 2020(3):5-10. |
/
〈 |
|
〉 |