海洋平台风载荷试验不确定度分析
收稿日期: 2021-03-02
网络出版日期: 2022-04-01
Uncertainty Analysis of Offshore Platform Wind Load Tests
Received date: 2021-03-02
Online published: 2022-04-01
海洋平台上层建筑一般形状复杂,风洞试验是获得风载荷最为可靠的方法.现阶段海洋平台风载荷不确定度分析流程及要点鲜有探讨,各因素影响程度尚不明确.率先针对某型海洋平台风载荷试验,基于国际拖曳水池会议(ITTC)推荐规程确立了不确定度分析流程,并进行风洞试验结果不确定度分析.根据试验流程梳理误差源,计算各相对不确定度分量大小.按其值对误差源进行等级评定,提出降低试验不确定度的方法.研究结果表明:风剖面、模型精度、气压测量以及天平测量状态对风载荷测量有较大影响,占总合成不确定度比例达到了96.13%.采用适当简化模型、合理校测风剖面、提高气压测量精度以及稳定测量状态等手段能有效降低试验不确定度.
代燚, 陈作钢, 王飞 . 海洋平台风载荷试验不确定度分析[J]. 上海交通大学学报, 2022 , 56(3) : 361 -367 . DOI: 10.16183/j.cnki.jsjtu.2021.066
The superstructures of offshore platforms are usually complex in shape, and wind tunnel test is the most reliable method to obtain the wind loads. Few researches about the procedures of uncertainty analysis (UA) and key points have been conducted, and the influences of error sources are not clear. The UA of an offshore platform wind load tests is first performed based on the International Towing Tank Conference (ITTC) recommended procedures. According to the wind load test procedure of the offshore platform, the uncertainties due to many error sources are analyzed. In order to obtain the remark of all error sources and propose the approach of reducing uncertainties, error sources are evaluated and graded. The results show that the wind profile, the accuracy of the model, the air pressure measurement, and the balance measuring state have a great influence on wind load coefficients, which contribute to 96.13% of the combined uncertainty. The uncertainties can be effectively reduced by model simplification, high quality wind profile, high precision air pressure measurement, and stable measurement state.
Key words: offshore platform; wind load tests; uncertainty analysis (UA)
[1] | 付德健, 冯士伦, 毛建斌, 等. 海洋工程风载荷计算方法[J]. 中国海洋平台, 2019, 34(5):89-94. |
[1] | FU Dejian, FENG Shilun, MAO Jianbin, et al. Calculation methods about wind load in ocean engineering[J]. China Offshore Platform, 2019, 34(5):89-94. |
[2] | 彭超, 冯光, 郑文涛, 等. 半潜式钻井平台风载荷CFD预报[J]. 船舶工程, 2020, 42(Sup.1):420-423. |
[2] | PENG Chao, FENG Guang, ZHENG Wentao, et al. CFD prediction of wind load on semi-submersible drilling unit[J]. Ship Engineering, 2020, 42(Sup.1):420-423. |
[3] | 乔丹, 马宁, 顾解忡. 不同堆垛模式下集装箱船风载荷特性研究[J]. 中国舰船研究, 2019, 14(3):105-115. |
[3] | QIAO Dan, MA Ning, GU Xiechong. Study on wind load characteristics for a container ship under different stacking modes[J]. Chinese Journal of Ship Research, 2019, 14(3):105-115. |
[4] | ITTC. ITTC-Recommended procedures and guidelines: Guide to the expression of uncertainty in experimental hydrodynamics[S]. Wuxi: ITTC, 2017. |
[5] | 张立, 陈建挺, 陈伟民, 等. 拖曳水池标模阻力复合航次试验不确定度分析[J]. 船舶工程, 2020, 42(4):38-43. |
[5] | ZHANG Li, CHEN Jianting, CHEN Weimin, et al. Uncertainty analysis of ship model repeated resistance tests in towing tank[J]. Ship Engineering, 2020, 42(4):38-43. |
[6] | 刘晗. 船舶近岸壁航行操纵性水动力与运动稳定性研究[D]. 上海: 上海交通大学, 2017. |
[6] | LIU Han. Manoeuvring hydrodynamics and stability of vessels navigating in proximity to the bank[D]. Shanghai: Shanghai Jiao Tong University, 2017. |
[7] | LIU H, MA N, GU X C. Uncertainty analysis for ship-bank interaction tests in a circulating water channel[J]. China Ocean Engineering, 2020, 34(3):352-361. |
[8] | 童寿龙, 陈作钢. 循环水槽船模阻力试验不确定度分析[J]. 中国舰船研究, 2020, 15(4):144-152. |
[8] | TONG Shoulong, CHEN Zuogang. Uncertainty analysis of ship model resistance measurement in circula-ting water channel[J]. Chinese Journal of Ship Research, 2020, 15(4):144-152. |
[9] | 李金海. 误差理论与测量不确定度评定[M]. 北京: 中国计量出版社, 2003. |
[9] | LI Jinhai. Error theory and measurement uncertainty analysis[M]. Beijing: China Metrology Press, 2003. |
[10] | PICARD A, DAVIS R S, GLÄSER M, et al. Revised formula for the density of moist air (CIPM-2007)[J]. Metrologia, 2008, 45(2):149-155. |
[11] | Det Norske Veritas. Environmental conditions and environmental loads: DNV-RP-C205[S]. Norway: DNV, 2017. |
/
〈 |
|
〉 |