考虑恢复过程中换相能力的后续换相失败抑制策略
收稿日期: 2021-01-06
网络出版日期: 2022-04-01
基金资助
国家重点研发计划项目(2016YFB0900600);国家自然科学基金(51877135);上海市启明星计划资助项目(18QA1402100)
A Suppression Strategy for Subsequent Commutation Failures Considering Commutation Capability of Recovery Process
Received date: 2021-01-06
Online published: 2022-04-01
丛新棚, 郑晓冬, 曹亚倩, 邰能灵, 缪源诚, 李珂 . 考虑恢复过程中换相能力的后续换相失败抑制策略[J]. 上海交通大学学报, 2022 , 56(3) : 333 -341 . DOI: 10.16183/j.cnki.jsjtu.2021.004
In order to suppress subsequent commutation failures of high voltage direct current (HVDC), the dynamic process of electrical and control quantities during system recovery is studied, and the main reason for subsequent commutation failures is proposed in the paper. During the recovery process, the voltage of the converter bus after the fault is in a state of drop, the actual firing angle of the inverter is in overshoot, and direct current continues to rise. These factors result in an insufficient system commutation capability to complete the transfer of valve arm inductance energy during the commutation process. A suppression strategy for subsequent commutation failure considering the commutation capability of the system recovery process is proposed. By limiting the direct current (DC) when the firing angle is in overshoot, the system commutation capability is increased, and subsequent commutation failures are suppressed. In addition, the DC system is effectively recovered. The proposed theory is tested and verified based on the HVDC CIGRE Benchmark in PSCAD/EMTDC.
[1] | 赵畹君. 高压直流输电工程技术[M]. 第2版. 北京: 中国电力出版社, 2011: 124. |
[1] | ZHAO Wanjun. High voltage direct current project technology [M]. 2nd ed. Beijing: China Electric Power Press, 2011: 124. |
[2] | 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J]. 中国电机工程学报, 2019, 39(11):3107-3119. |
[2] | DONG Xinzhou, TANG Yong, BU Guangquan, et al. Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J]. Proceedings of the CSEE, 2019, 39(11):3107-3119. |
[3] | 杨海涛, 吉平, 苗淼, 等. 未来中国特高压电网结构形态与电源组成相互关系分析[J]. 电力系统自动化, 2018, 42(6):9-17. |
[3] | YANG Haitao, JI Ping, MIAO Miao, et al. Analysis on interrelationship between future UHV power grid structural form and power source composition in China[J]. Automation of Electric Power Systems, 2018, 42(6):9-17. |
[4] | 郑俊超. 高压直流输电线路继电保护方案研究[D]. 武汉: 华中科技大学, 2019. |
[4] | ZHENG Junchao. Research on relay protection scheme for HVDC transmission lines[D]. Wuhan: Huazhong University of Science and Technology, 2019. |
[5] | 王峰, 刘天琪, 李兴源, 等. 考虑直流电流上升及交流电压下降速度的换相失败分析[J]. 电力系统自动化, 2016, 40(22):111-117. |
[5] | WANG Feng, LIU Tianqi, LI Xingyuan, et al. Commutation failure analysis considering DC current rise and AC voltage drop speed[J]. Automation of Electric Power Systems, 2016, 40(22):111-117. |
[6] | 王童辉, 贾科, 毕天姝, 等. 基于动态相量理论的高压直流系统换相失败暂态特性[J]. 电力系统自动化, 2018, 42(23):78-85. |
[6] | WANG Tonghui, JIA Ke, BI Tianshu, et al. Transient characteristics of commutation failure of HVDC system based on dynamic phasor theory[J]. Automation of Electric Power Systems, 2018, 42(23):78-85. |
[7] | 郭春义, 赵剑, 刘炜, 等. 抑制高压直流输电系统换相失败方法综述[J]. 中国电机工程学报, 2018, 38(Sup.1):1-10. |
[7] | GUO Chunyi, ZHAO Jian, LIU Wei, et al. A review of methods to mitigate the commutation failure for LCC-HVDC[J]. Proceedings of the CSEE, 2018, 38(Sup.1):1-10. |
[8] | 李新年. 特高压直流输电系统换相失败及其预防措施研究[D]. 北京: 北京交通大学, 2018. |
[8] | LI Xinnian. Study on commutation failure and its prevention strategy in UHVDC[D]. Beijing: Beijing Jiaotong University, 2018. |
[9] | 阮思烨, 徐凯, 刘丹, 等. 直流输电系统换相失败统计分析及抵御措施建议[J]. 电力系统自动化, 2019, 43(18):13-17. |
[9] | RUAN Siye, XU Kai, LIU Dan, et al. Statistical analysis and suggestions on resistance measures for commutation failures of HVDC transmission system[J]. Automation of Electric Power Systems, 2019, 43(18):13-17. |
[10] | 景柳铭, 王宾, 董新洲, 等. 高压直流输电系统连续换相失败研究综述[J]. 电力自动化设备, 2019, 39(9):116-123. |
[10] | JING Liuming, WANG Bin, DONG Xinzhou, et al. Review of consecutive commutation failure research for HVDC transmission system[J]. Electric Power Automation Equipment, 2019, 39(9):116-123. |
[11] | 汤奕, 郑晨一. 高压直流输电系统换相失败影响因素研究综述[J]. 中国电机工程学报, 2019, 39(2):499-513. |
[11] | TANG Yi, ZHENG Chenyi. Review on influencing factors of commutation failure in HVDC systems[J]. Proceedings of the CSEE, 2019, 39(2):499-513. |
[12] | 刘磊, 林圣, 刘健, 等. 控制器交互不当引发后续换相失败的机理分析[J]. 电网技术, 2019, 43(10):3562-3568. |
[12] | LIU Lei, LIN Sheng, LIU Jian, et al. Mechanism analysis of subsequent commutation failures caused by improper interaction of controllers[J]. Power System Technology, 2019, 43(10):3562-3568. |
[13] | 郑超, 周静敏, 李惠玲, 等. 换相失败预测控制对电压稳定性影响及优化措施[J]. 电力系统自动化, 2016, 40(12):179-183. |
[13] | ZHENG Chao, ZHOU Jingmin, LI Huiling, et al. Impact of commutation failure prediction control on voltage stability and its optimization measures[J]. Automation of Electric Power Systems, 2016, 40(12):179-183. |
[14] | MIRSAEIDI S, DONG X Z, TZELEPIS D, et al. A predictive control strategy for mitigation of commutation failure in LCC-based HVDC systems[J]. IEEE Transactions on Power Electronics, 2019, 34(1):160-172. |
[15] | 李新年, 陈树勇, 庞广恒, 等. 华东多直流馈入系统换相失败预防和自动恢复能力的优化[J]. 电力系统自动化, 2015, 39(6):134-140. |
[15] | LI Xinnian, CHEN Shuyong, PANG Guangheng, et al. Optimization of commutation failure prevention and automatic recovery for East China multi-infeed high-voltage direct current system[J]. Automation of Electric Power Systems, 2015, 39(6):134-140. |
[16] | 周博昊, 李凤婷, 尹纯亚, 等. 基于直流电流有限时域预测算法的换相失败预防策略[J]. 电力系统自动化, 2020, 44(6):178-185. |
[16] | ZHOU Bohao, LI Fengting, YIN Chunya, et al. Preventive strategy for mitigation of commutation failure based on finite time domain prediction algorithm of DC current[J]. Automation of Electric Power Systems, 2020, 44(6):178-185. |
[17] | GUO C Y, YANG Z Z, JIANG B S, et al. An evolved capacitor-commutated converter embedded with antiparallel thyristors based dual-directional full-bridge module[J]. IEEE Transactions on Power Delivery, 2018, 33(2):928-937. |
[18] | XUE Y, ZHANG X P, YANG C H. Elimination of commutation failures of LCC HVDC system with controllable capacitors[J]. IEEE Transactions on Power Systems, 2016, 31(4):3289-3299. |
[19] | 杨欢欢, 朱林, 蔡泽祥, 等. 直流控制对直流系统无功动态特性的影响分析[J]. 电网技术, 2014, 38(10):2631-2637. |
[19] | YANG Huanhuan, ZHU Lin, CAI Zexiang, et al. Influence of HVDC control on HVDC reactive power dynamic characteristic[J]. Power System Technology, 2014, 38(10):2631-2637. |
[20] | 郭春义, 李春华, 刘羽超, 等. 一种抑制传统直流输电连续换相失败的虚拟电阻电流限制控制方法[J]. 中国电机工程学报, 2016, 36(18):4930-4937. |
[20] | GUO Chunyi, LI Chunhua, LIU Yuchao, et al. A DC current limitation control method based on virtual-resistance to mitigate the continuous commutation failure for conventional HVDC[J]. Proceedings of the CSEE, 2016, 36(18):4930-4937. |
[21] | 李瑞鹏, 李永丽, 陈晓龙. 一种抑制直流输电连续换相失败的控制方法[J]. 中国电机工程学报, 2018, 38(17):5029-5042. |
[21] | LI Ruipeng, LI Yongli, CHEN Xiaolong. A control method for suppressing the continuous commutation failure of HVDC transmission[J]. Proceedings of the CSEE, 2018, 38(17):5029-5042. |
[22] | 郭利娜, 刘天琪, 李兴源. 抑制多馈入直流输电系统后续换相失败措施研究[J]. 电力自动化设备, 2013, 33(11):95-99. |
[22] | GUO Lina, LIU Tianqi, LI Xingyuan. Measures inhibiting follow-up commutation failures in multi-infeed HVDC system[J]. Electric Power Automation Equipment, 2013, 33(11):95-99. |
[23] | 汪娟娟, 文兆新, 傅闯, 等. 基于换相电压相位检测的高压直流故障恢复策略[J]. 电网技术, 2019, 43(10):3504-3514. |
[23] | WANG Juanjuan, WEN Zhaoxin, FU Chuang, et al. HVDC fault recovery strategy based on phase change detection of commutation voltage[J]. Power System Technology, 2019, 43(10):3504-3514. |
[24] | 王子民, 傅闯, 汪娟娟, 等. 锁相环对HVDC系统后续换相失败的影响研究[J]. 中国电机工程学报, 2019, 39(23):6836-6843. |
[24] | WANG Zimin, FU Chuang, WANG Juanjuan, et al. Study on the influence of phase-locked loop on follow-up commutation failure of HVDC system[J]. Proceedings of the CSEE, 2019, 39(23):6836-6843. |
[25] | 刘席洋, 王增平, 郑博文, 等. LCC-HVDC故障恢复型连续换相失败机理分析与抑制措施[J]. 中国电机工程学报, 2020, 40(10):3163-3172. |
[25] | LIU Xiyang, WANG Zengping, ZHENG Bowen, et al. Mechanism analysis and mitigation measures for continuous commutation failure during the restoration of LCC-HVDC[J]. Proceedings of the CSEE, 2020, 40(10):3163-3172. |
/
〈 |
|
〉 |