新型电力系统与综合能源

双馈风电场并网抑制频率振荡控制策略

展开
  • 1.华北水利水电大学 电力学院,郑州 450011
    2.广东工业大学 自动化学院,广州 510006
    3.贵州大学 电气工程学院,贵阳 550025
    4.河南科源水利建设工程检测有限公司,郑州 450003
刘新宇(1976-),男,河南省南阳市人,副教授,从事控制理论与控制工程、新能源发电与智能电网、模式识别与智能系统研究.

收稿日期: 2021-11-01

  网络出版日期: 2022-04-01

基金资助

国家自然科学基金资助项目(51467003);河南省高等学校重点科研项目(21A120006)

Control Strategies for Suppressing Frequency Oscillation of Doubly-Fed Wind Farms Connected to Grid

Expand
  • 1. School of Electric Power, North China University of Water Resources and Electric Power, Zhenzhou 450011, China
    2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
    3. Electrical Engineering College, Guizhou University, Guiyang 550025, China
    4. Henan Keyuan Water Conservancy Construction Engineering Inspection Co., Ltd., Zhenzhou 450003, China

Received date: 2021-11-01

  Online published: 2022-04-01

摘要

针对大型风电场跨区输送电能时引起的低频振荡问题,提出了一种阻尼系统低频振荡的单神经元自适应比例积分微分(PID)附加阻尼控制策略.通过对双馈风电机组的动态频率响应特性进行分析,构建了一种在单神经元自适应PID控制算法中引入二次型性能指标的风电场阻尼系统振荡控制器.通过对励磁变频器进行自适应调节,促使风电场快速发出有功功率,产生最大正阻尼,抑制系统低频振荡.利用MATLAB搭建含风电场的四机两区域电力系统仿真模型,通过对比验证了所提方法能够在系统发生低频振荡时有效抑制同步发电机功角的摇摆,改善系统惯性响应,降低电网发生低频振荡的风险.

本文引用格式

刘新宇, 逯芯妍, 曾龙, 郝正航, 赵起放, 李现伟, 郝同盟 . 双馈风电场并网抑制频率振荡控制策略[J]. 上海交通大学学报, 2022 , 56(3) : 303 -311 . DOI: 10.16183/j.cnki.jsjtu.2021.437

Abstract

Aimed at the problem of low-frequency oscillations caused by cross-region power transmissioin of large-scale wind farms, a single neuron adaptive proportion integration differentiation (PID) additional damping control strategy for low-frequency oscillations of the damping system is proposed in this paper. By analyzing the dynamic frequency response characteristics of doubly-fed wind turbines, a wind farm damping system oscillation controller is constructed by introducing quadratic performance indicators into the single neuron adaptive PID control algorithm. By adaptively adjusting the excitation frequency converter, the wind farm can quickly generate active power and the maximum positive damping, and suppress the low-frequency oscillation of the damping system. MATLAB is used to build a four-machine two-region power system simulation model with a wind farm. The comparison verifies that the method proposed in this paper can effectively suppress the swing of the power angle of the synchronous generator when low-frequency oscillation occurs in the system, improve the inertial response of the system, and reduce the risk of low-frequency oscillation in the power grid.

参考文献

[1] 杨蕾, 盛师贤, 郭成, 等. 应用附加阻尼抑制风电接入后电网的低频振荡策略研究[J]. 电工技术, 2020(21):72-77.
[1] YANG Lei, SHENG Shixian, GUO Cheng, et al. Research on low frequency oscillation suppression strategy of grid connected with wind power by additional damping[J]. Electric Engineering, 2020(21):72-77.
[2] 王鹏, 李啸骢, 田烨杰, 等. 双馈风电机组抑制电力系统低频振荡的非线性控制策略[J]. 电气开关, 2019, 57(6):14-18.
[2] WANG Peng, LI Xiaocong, TIAN Yejie, et al. Nonlinear control strategy for doubly-fed wind turbine to suppress low-frequency oscillation of power systems[J]. Electric Switchgear, 2019, 57(6):14-18.
[3] MA Y F, LIU J, LIU H H, et al. Active-reactive additional damping control of a doubly-fed induction generator based on active disturbance rejection control[J]. Energies, 2018, 11(5):1-18.
[4] 章艳, 张萌, 高晗. 基于阻耗系数的双馈风机系统阻尼控制研究[J]. 电网技术, 2021, 45(7):2781-2795.
[4] ZHANG Yan, ZHANG Meng, GAO Han. Damping control for grid connected DFIG system based on dissipated energy coefficient[J]. Power System Technology, 2021, 45(7):2781-2795.
[5] TANG Z Y, HILL D J, LIU T, et al. Distributed inter-area oscillation damping control for power systems by using wind generators and load aggregators[J]. International Journal of Electrical Power & Energy Systems, 2020, 123:106201.
[6] CAI G W, CHEN X S, SUN Z L, et al. A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation[J]. Applied Sciences, 2019, 9(11):2353.
[7] 潘峰, 闫庚龙, 苑伟华, 等. 基于双滑模的永磁同步电机直接转矩控制[J]. 电工技术学报, 2018, 33(Sup.2):427-433.
[7] PAN Feng, YAN Genglong, YUAN Weihua, et al. Research on direct torque control for permanent magnet synchronous motor based on the double sliding mode[J]. Transactions of China Electrotechnical Society, 2018, 33(Sup.2):427-433.
[8] 倪斌业, 向往, 鲁晓军, 等. 基于状态反馈附加阻尼控制的柔性直流电网抑制低频振荡[J]. 电力自动化设备, 2019, 39(3):45-50.
[8] NI Binye, XIANG Wang, LU Xiaojun, et al. Low-frequency oscillation suppression using flexible DC grid based on state feedback supplementary damping control[J]. Electric Power Automation Equipment, 2019, 39(3):45-50.
[9] LI C S, FANG Y, HE P, et al. Additional damping control of a hybrid multi-infeed DC system with a wind farm[J]. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 2021, 14(2):189-197.
[10] DENG W, PEI W, XIAO H, et al. Research on stability margin enhancement for low-voltage multi-terminal DC system based on additional damping control[J]. IET Generation, Transmission & Distribution, 2019, 13(15):3464-3475.
[11] YANG L, GAO J Y, MA Z, et al. Analysis on the influence of wind power participating in frequency modulation on low-frequency oscillation in Yunnan power grid[J]. Journal of Physics: Conference Series, 2021, 1748:052030.
[12] 艾松波, 唐欣, 王红亚. 光伏电站附加阻尼控制器及控制参数优化设计[J]. 电力科学与技术学报, 2020, 35(6):21-27.
[12] AI Songbo, TANG Xin, WANG Hongya. Optimal design of additional damping controller and control parameters for photovoltaic power station[J]. Journal of Electric Power Science and Technology, 2020, 35(6):21-27.
[13] GUPTA A K, VERMA K, NIAZI K R. Robust coordinated control for damping low frequency oscillations in high wind penetration power system[J]. International Transactions on Electrical Energy Systems, 2019, 29(5):12006.
[14] 杨蕾, 甘维公, 李胜男, 等. DFIG风电机组协同SVG抑制电网低频振荡方法[J]. 中国电力, 2020, 53(11):175-184.
[14] YANG Lei, GAN Weigong, LI Shengnan, et al. Method of DFIG cooperating with SVG to suppress low-frequency oscillation in power systems[J]. Electric Power, 2020, 53(11):175-184.
[15] 陈祥松. 高比例双馈风电并网电力系统机电振荡阻尼控制策略研究[D]. 吉林: 东北电力大学, 2020.
[15] LCHENI Xiangsong. Reseach on control strategy of doubly-fed induction generator to suppress electromechanical oscillation of power system[D]. Jilin: Northeast Dianli University, 2020.
[16] BHUKYA J, MAHAJAN V. Mathematical modelling and stability analysis of PSS for damping LFOs of wind power system[J]. IET Renewable Power Generation, 2019, 13(1):103-115.
[17] ZHANG Y, ZHANG M, GAO H. A fuzzy control strategy for grid connected DFIG system based on dissipated energy coefficient[C]// 2020 IEEE 4th Conference on Energy Internet and Energy System Integration. Wuhan, China: IEEE, 2020: 530-536.
[18] 荣飞, 李培瑶, 周诗嘉. 双馈风电场损耗最小化的有功无功协调优化控制[J]. 电工技术学报, 2020, 35(3):520-529.
[18] RONG Fei, LI Peiyao, ZHOU Shijia. Coordinated optimal control with loss minimization for active and reactive power of doubly fed induction generator-based wind farm[J]. Transactions of China Electrotechnical Society, 2020, 35(3):520-529.
[19] 陈卓, 郝正航, 秦水介. 风电场阻尼电力系统振荡的机理及时滞影响[J]. 电力系统自动化, 2013, 37(23):8-14.
[19] CHEN Zhuo, HAO Zhenghang, QIN Shuijie. Mechanism of wind farm damping power system oscillation and time-delay influence[J]. Automation of Electric Power Systems, 2013, 37(23):8-14.
[20] 刘金琨. 先进PID控制MATLAB仿真 [M]. 第2版 北京: 电子工业出版社, 2004.
[20] LIU Jinkun. Advanced PID control MATLAB simulation [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2004.
文章导航

/