大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述
收稿日期: 2021-11-19
网络出版日期: 2022-04-01
基金资助
国家自然科学基金(U2166201)
A Review of Coupled Electricity and Hydrogen Energy System with Transportation System Under the Background of Large-Scale New Energy Vehicles Access
Received date: 2021-11-19
Online published: 2022-04-01
新能源的大规模开发利用是实现“双碳”目标的重要手段.可再生能源发电耦合制氢技术在提高可再生能源消纳率的同时,加速了新能源汽车的普及.未来,电氢能源系统与交通系统的耦合将会更加密切.以大规模新能源汽车接入为背景,首先综述了电氢能源系统的发展现状,并对耦合系统制氢、出力波动平抑以及参与电力系统优化运行3种工作模式进行了介绍.在此基础上,从不同能源角度出发,分别对电力-交通耦合系统中的联合规划与优化运行研究现状以及氢能-交通耦合系统中的加氢站优化与氢能运输相关问题进行了总结分析.最后,结合当前研究中存在的瓶颈,从动态模型构建、不确定性因素影响等方面对未来可行研究方向进行了展望.
李佳琪, 徐潇源, 严正 . 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022 , 56(3) : 253 -266 . DOI: 10.16183/j.cnki.jsjtu.2021.464
The large-scale utilization of renewable energy is an important way to achieve the “double carbon targets”. The technology of coupled renewable energy with hydrogen system can improve the consumption rate of renewable energy and the penetration of new energy vehicles. The coupling between the electricity-hydrogen energy system and the transportation system will be even closer in the future. Based on the access of large-scale new energy vehicles, first, the development of the electricity and hydrogen energy system was summarized, and the three working modes of electricity-hydrogen coupling system including hydrogen production, output smoothing, and coordinated operation with electricity network were introduced. Then, the research status of the electricity-transportation coupling system on planning and optimal operation, and the problems of hydrogen-transportation coupling system on hydrogen refueling station optimization and hydrogen transportation were analyzed. Finally, in combination with the existing bottlenecks, the future feasible research directions such as dynamic model construction and the influence of uncertain factors were proposed.
[1] | 鲍健强, 苗阳, 陈锋. 低碳经济: 人类经济发展方式的新变革[J]. 中国工业经济, 2008(4):153-160. |
[1] | BAO Jianqiang, MIAO Yang, CHEN Feng. Low carbon economy: Revolution in the way of human economic development[J]. China Industrial Economics, 2008(4):153-160. |
[2] | 平新乔, 郑梦圆, 曹和平. 中国碳排放强度变化趋势与“十四五”时期碳减排政策优化[J]. 改革, 2020(11):37-52. |
[2] | PING Xinqiao, ZHENG Mengyuan, CAO Heping. The change trend of carbon emission intensity in China and the policy optimization of carbon emission reduction during the 14th five-year plan period[J]. Reform, 2020(11):37-52. |
[3] | 何建坤. 碳达峰碳中和目标导向下能源和经济的低碳转型[J]. 环境经济研究, 2021, 6(1):1-9. |
[3] | HE Jiankun. Low carbon transformation of energy and economy aiming for the peaking of carbon emission and carbon neutrality[J]. Journal of Environmental Economics, 2021, 6(1):1-9. |
[4] | 陈思茹, 张帅, 袁长伟. 中国交通运输经济发展与碳排放效率评价[J]. 中国公路学报, 2019, 32(1):154-161. |
[4] | CHEN Siru, ZHANG Shuai, YUAN Changwei. China’s transportation economy development and carbon environmental efficiency evaluation[J]. China Journal of Highway and Transport, 2019, 32(1):154-161. |
[5] | International Energy Agency. Global EV outlook 2019, (2019-05-30)[2021-06-21]. https://www.iea.org/gevo2019/ https://www.iea.org/gevo2019/. |
[6] | 宋城. 国家发改委等联合印发《汽车产业中长期发展规划》[J]. 中国设备工程, 2017(9):1. |
[6] | SONG Cheng. The national development and reform commission and others jointly issue <The medium and long term development plan of automobile industry>[J]. China Plant Engineering, 2017(9):1. |
[7] | 胡海涛, 郑政, 何正友, 等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报, 2018, 38(1):12-24. |
[7] | HU Haitao, ZHENG Zheng, HE Zhengyou, et al. Transport energy internet architecture and key technologies[J]. Proceedings of the CSEE, 2018, 38(1):12-24. |
[8] | 杨天宇, 郭庆来, 盛裕杰, 等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化, 2020, 44(11):1-9. |
[8] | YANG Tianyu, GUO Qinglai, SHENG Yujie, et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems, 2020, 44(11):1-9. |
[9] | 葛维春, 张艳军, 高超, 等. 基于风电消纳能力态势划分的源荷储系统分阶段优化策略[J]. 电力系统自动化, 2019, 43(15):26-33. |
[9] | GE Weichun, ZHANG Yanjun, GAO Chao, et al. Phased optimal strategy of source-load-storage system based on state partition of accommodation capacity of wind power[J]. Automation of Electric Power Systems, 2019, 43(15):26-33. |
[10] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4):11-24. |
[10] | YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4):11-24. |
[11] | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21):127-135. |
[11] | CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21):127-135. |
[12] | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19):4071-4083. |
[12] | SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19):4071-4083. |
[13] | 许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报, 2019, 39(9):2531-2537. |
[13] | XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9):2531-2537. |
[14] | ABDIN Z, ZAFARANLOO A, RAFIEE A, et al. Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120:109620. |
[15] | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8):25-32. |
[15] | LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8):25-32. |
[16] | 郝伟峰, 贾丹瑶, 李红军. 基于可再生能源水电解制氢技术发展概述[J]. 价值工程, 2018, 37(29):236-237. |
[16] | HAO Weifeng, JIA Danyao, LI Hongjun. Overview of hydrogen production technology based on renewable energy from water electrolysis[J]. Value Engineering, 2018, 37(29):236-237. |
[17] | 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3):446-462. |
[17] | LI Zheng, ZHANG Rui, SUN Hexu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3):446-462. |
[18] | 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学, 2015, 17(3):30-34. |
[18] | YAN Zhuoyong, KONG Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Strategic Study of CAE, 2015, 17(3):30-34. |
[19] | HUANG P H, KUO J K, WU Z D. Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(20):8514-8524. |
[20] | 都鹤, 吕洪, 杨代军. 风光互补发电制氢系统仿真研究进展[J]. 电源技术, 2017, 41(1):173-175. |
[20] | DU He, LV Hong, YANG Daijun. Simulation research progress of wind/photovoltaic (PV) hydrogen system[J]. Chinese Journal of Power Sources, 2017, 41(1):173-175. |
[21] | BRAUNS J, TUREK T. Alkaline water electrolysis powered by renewable energy: A review[J]. Processes, 2020, 8(2):248-260. |
[22] | 吴涛. 离网型风电制氢系统功率变换及控制技术研究[D]. 北京: 中国科学院大学, 2018. |
[22] | WU Tao. Research on power conversion and control technology of off grid wind power hydrogen generation system[D]. Beijing: University of Chinese Academy of Sciences, 2018. |
[23] | 李文磊. 风光互补发电储能制氢系统研究[D]. 邯郸: 河北工程大学, 2019. |
[23] | LI Wenlei. Research on hydrogen production system of wind-solar complementary power generation[D]. Handan: Hebei University of Engineering, 2019. |
[24] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3):463-472. |
[24] | SHEN Xiaojun, NIE Congying, LÜ Hong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3):463-472. |
[25] | ZAENAL M U, SAMI MOHAMMED S, WAHHAB A A, et al. Complementary power supply to compensate the wind power in water electrolytic system for hydrogen production[C]// 2019 Global Conference for Advancement in Technology. Bangalore, India: IEEE, 2019: 1-4. |
[26] | GARCÍA CLÚA J G, DE BATTISTA H, MANTZ R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11):5786-5792. |
[27] | 邓智宏, 江岳文. 考虑制氢效率特性的风氢系统容量优化[J]. 可再生能源, 2020, 38(2):259-266. |
[27] | DENG Zhihong, JIANG Yuewen. Optimal sizing of a wind-hydrogen system under consideration of the efficiency characteristics of electrolysers[J]. Renewable Energy Resources, 2020, 38(2):259-266. |
[28] | NADALETI W C, BORGES DOS SANTOS G, LOURENÇO V A. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis[J]. International Journal of Hydrogen Energy, 2020, 45(3):1373-1384. |
[29] | HUMAN G, VAN SCHOOR G, UREN K R. Power management and sizing optimisation of renewable energy hydrogen production systems[J]. Sustainable Energy Technologies and Assessments, 2019, 31:155-166. |
[30] | WON W, KWON H, HAN J H, et al. Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization[J]. Renewable Energy, 2017, 103:226-238. |
[31] | 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7):2156-2164. |
[31] | YUAN Tiejiang, HU Kelin, GUAN Yuhang, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. High Voltage Engineering, 2015, 41(7):2156-2164. |
[32] | 俞红梅, 衣宝廉. 电解制氢与氢储能[J]. 中国工程科学, 2018, 20(3):58-65. |
[32] | YU Hongmei, YI Baolian. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic Study of CAE, 2018, 20(3):58-65. |
[33] | TAKAHASHI R, KINOSHITA H, MURATA T, et al. A cooperative control method for output power smoothing and hydrogen production by using variable speed wind generator[C]// 2008 13th International Power Electronics and Motion Control Conference. Pozan, Poland: IEEE, 2008: 2337-2342. |
[34] | 牛萌, 肖宇, 刘锋, 等. 可再生能源接入对氢储能系统的影响及控制策略[J]. 电力建设, 2018, 39(4):28-34. |
[34] | NIU Meng, XIAO Yu, LIU Feng, et al. Influences of renewable energy on hydrogen storage system and its control strategy[J]. Electric Power Construction, 2018, 39(4):28-34. |
[35] | 袁铁江, 董小顺, 张增强, 等. 基于氢储能技术的双馈风力发电系统基本架构及其建模[J]. 高电压技术, 2016, 42(7):2100-2110. |
[35] | YUAN Tiejiang, DONG Xiaoshun, ZHANG Zengqiang, et al. Architecture and modeling of doubly-fed wind power generation system based on hydrogen energy storage technology[J]. High Voltage Engineering, 2016, 42(7):2100-2110. |
[36] | TAHARA S, KOIWA K, UMEMURA A, et al. A new method to control frequency fluctuation of power system with wind farm by using hydrogen generating system[C]// 3rd Renewable Power Generation Conference. Naples, Italy: IET, 2014: 1-6. |
[37] | TAKAHASHI R, KINOSHITA H, MURATA T, et al. Output power smoothing and hydrogen production by using variable speed wind generators[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2):485-493. |
[38] | MUYEEN S M, TAKAHASHI R, TAMURA J. Electrolyzer switching strategy for hydrogen generat-ion from variable speed wind generator[J]. Electric Power Systems Research, 2011, 81(5):1171-1179. |
[39] | 张宏博, 任泓源, 金成日. 基于氢氧储能的平抑风电输出功率方法研究[J]. 黑龙江科技信息, 2014(27):158. |
[39] | ZHANG Hongbo, REN Hongyuan, JIN Chengri. Research on the method of stabilizing wind power output based on hydrogen oxygen energy storage[J]. Heilongjiang Science and Technology Information, 2014(27):158. |
[40] | RECALDE MELO D F, CHANG-CHIEN L R. Synergistic control between hydrogen storage system and offshore wind farm for grid operation[J]. IEEE Transactions on Sustainable Energy, 2014, 5(1):18-27. |
[41] | FANG R M, LIANG Y. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46):25104-25111. |
[42] | 杨少帅, 刘易. 基于滤波原理的光氢超并网系统建模与功率控制[J]. 电测与仪表, 2017, 54(15):86-90. |
[42] | YANG Shaoshuai, LIU Yi. Modeling and power control of active PV electrolyzer and supercapacitor grid-connected system based on the principle of filtering[J]. Electrical Measurement & Instrumentation, 2017, 54(15):86-90. |
[43] | 孙泽伦, 陈洁, 滕扬新, 等. 基于混合储能平抑风电波动的负反馈分层模糊控制策略[J]. 电力电容器与无功补偿, 2019, 40(4):176-182. |
[43] | SUN Zelun, CHEN Jie, TENG Yangxin, et al. Negative feedback hierarchical fuzzy control strategy based on hybrid energy storage wind power fluctuation suppression[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(4):176-182. |
[44] | PATSIOS C, ANTONAKOPOULOS M, CHANIOTIS A, et al. Control and analysis of a hybrid renewable energy-based power system[C]// The XIX International Conference on Electrical Machines-ICEM 2010. Rome, Italy: IEEE, 2010: 1-6. |
[45] | AGBOSSOU K, KOLHE M, HAMELIN J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen[J]. IEEE Transactions on Energy Conversion, 2004, 19(3):633-640. |
[46] | HARUNI A M O, NEGNEVITSKY M, HAQUE M E, et al. A novel operation and control strategy for a standalone hybrid renewable power system[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2):402-413. |
[47] | ABDELKAFI A, KRICHEN L. Energy management optimization of a hybrid power production unit based renewable energies[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:1-9. |
[48] | ZHOU T, FRANCOIS B. Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1):95-104. |
[49] | 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10):2982-2990. |
[49] | CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power System Technology, 2016, 40(10):2982-2990. |
[50] | 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17):84-94. |
[50] | CAI Guowei, CHEN Chong, KONG Lingguo, et al. Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17):84-94. |
[51] | 蔡国伟, 彭龙, 孔令国, 等. 光氢混合发电系统功率协调控制[J]. 电力系统自动化, 2017, 41(1):109-116. |
[51] | CAI Guowei, PENG Long, KONG Lingguo, et al. Power coordinated control of photovoltaic and hydrogen hybrid power generation system[J]. Automation of Electric Power Systems, 2017, 41(1):109-116. |
[52] | 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14):3371-3384. |
[52] | KONG Lingguo, CAI Guowei, LI Longfei, et al. Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14):3371-3384. |
[53] | 张虹, 孙权, 李占军, 等. 风氢耦合系统协同控制发电策略研究[J]. 东北电力大学学报, 2018, 38(3):15-23. |
[53] | ZHANG Hong, SUN Quan, LI Zhanjun, et al. Research on synergistic control strategy of wind power coupled with hydrogen system[J]. Journal of Northeast Electric Power University, 2018, 38(3):15-23. |
[54] | YAMASHITA D, TSUNO K, KOIKE K, et al. Distributed control of a user-on-demand renewable-energy power-source system using battery and hydrogen hybrid energy-storage devices[J]. International Journal of Hydrogen Energy, 2019, 44(50):27542-27552. |
[55] | 邓浩, 陈洁, 焦东东, 等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术, 2020, 46(1):99-106. |
[55] | DENG Hao, CHEN Jie, JIAO Dongdong, et al. Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High Voltage Engineering, 2020, 46(1):99-106. |
[56] | 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42(1):170-179. |
[56] | LIU Jichun, ZHOU Chunyan, GAO Hongjun, et al. A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power System Technology, 2018, 42(1):170-179. |
[57] | 贾洋洋, 仲海涛, 张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力, 2019, 32(11):38-44. |
[57] | JIA Yangyang, ZHONG Haitao, ZHANG Zhisheng. Optimized economic dispatch of distributed energy system with hydrogen storage device[J]. Guangdong Electric Power, 2019, 32(11):38-44. |
[58] | 李咸善, 杨宇翔. 基于双向电价补偿的含氢储能风电和梯级水电联合优化调度[J]. 电网技术, 2020, 44(9):3297-3306. |
[58] | LI Xianshan, YANG Yuxiang. Optimization dispatching for joint operation of hydrogen storage-wind power and cascade hydropower station based on bidirectional electricity price compensation[J]. Power System Technology, 2020, 44(9):3297-3306. |
[59] | 刘志坚, 余莎, 梁宁. 考虑制氢储能参与的互联电力系统优化调度研究[J]. 电力科学与工程, 2020, 36(3):45-51. |
[59] | LIU Zhijian, YU Sha, LIANG Ning. The optimal scheduling with hydrogen energy storage participation for interconnected power system[J]. Electric Power Science and Engineering, 2020, 36(3):45-51. |
[60] | 贾成真, 王灵梅, 孟恩隆, 等. 风光氢耦合发电系统的容量优化配置及日前优化调度[J]. 中国电力, 2020, 53(10):80-87. |
[60] | JIA Chengzhen, WANG Lingmei, MENG Enlong, et al. Optimal capacity configuration and day-ahead scheduling of wind-solar-hydrogen coupled power generation system[J]. Electric Power, 2020, 53(10):80-87. |
[61] | 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5):1428-1439. |
[61] | WEI Fanrong, SUI Quan, LIN Xiangning, et al. Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5):1428-1439. |
[62] | 滕云, 王泽镝, 金红洋, 等. 用于电网调节能力提升的电热氢多源协调储能系统模型[J]. 中国电机工程学报, 2019, 39(24):7209-7217. |
[62] | TENG Yun, WANG Zedi, JIN Hongyang, et al. A model and coordinated optimization for the multi-energy storage system of electricity heat hydrogen to regulation enhancement of power grid[J]. Proceedings of the CSEE, 2019, 39(24):7209-7217. |
[63] | 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6):1603-1613. |
[63] | SUI Quan, MA Xiao, WEI Fanrong, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6):1603-1613. |
[64] | 高晓松, 李更丰, 肖遥, 等. 基于分布鲁棒优化的电-气-热综合能源系统日前经济调度[J]. 电网技术, 2020, 44(6):2245-2254. |
[64] | GAO Xiaosong, LI Gengfeng, XIAO Yao, et al. Day-ahead economical dispatch of electricity-gas-heat integrated energy system based on distributionally robust optimization[J]. Power System Technology, 2020, 44(6):2245-2254. |
[65] | 袁铁江, 段青熙, 秦艳辉, 等. 风电-氢储能与煤化工多能耦合系统能量广域协调控制架构[J]. 高电压技术, 2016, 42(9):2748-2755. |
[65] | YUAN Tiejiang, DUAN Qingxi, QIN Yanhui, et al. Energy wide-area coordination control architecture of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. High Voltage Engineering, 2016, 42(9):2748-2755. |
[66] | 段青熙, 袁铁江, 梅生伟, 等. 风电-氢储能与煤化工多能耦合系统能量协调控制策略[J]. 高电压技术, 2018, 44(1):176-186. |
[66] | DUAN Qingxi, YUAN Tiejiang, MEI Shengwei, et al. Energy coordination control of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. High Voltage Engineering, 2018, 44(1):176-186. |
[67] | 魏晓霞. “互联网+”下全球电动交通互联网与泛电动汽车充电网络模型[J]. 电气应用, 2015, 34(16):132-136. |
[67] | WEI Xiaoxia. “Internet+” global electric transport internet and pan electric vehicle charging network model[J]. Electrotechnical Application, 2015, 34(16):132-136. |
[68] | 王珏莹, 胡志坚, 谢仕炜. 计及交通流量调度的智慧综合能源系统规划[J]. 中国电机工程学报, 2020, 40(23):7539-7555. |
[68] | WANG Jueying, HU Zhijian, XIE Shiwei. Smart multi-energy system planning considering the traffic scheduling[J]. Proceedings of the CSEE, 2020, 40(23):7539-7555. |
[69] | 何正友, 向悦萍, 杨健维, 等. 电力与交通系统协同运行控制的研究综述及展望[J]. 全球能源互联网, 2020, 3(6):569-581. |
[69] | HE Zhengyou, XIANG Yueping, YANG Jianwei, et al. Review on cooperative operation and control of transportation and power systems[J]. Journal of Global Energy Interconnection, 2020, 3(6):569-581. |
[70] | WEI W, WU D M, WU Q W, et al. Interdependence between transportation system and power distribution system: A comprehensive review on models and applications[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(3):433-448. |
[71] | TENG F, DING Z H, HU Z C, et al. Technical review on advanced approaches for electric vehicle charging demand management, part I: Applications in electric power market and renewable energy integration[J]. IEEE Transactions on Industry Applications, 2020, 56(5):5684-5694. |
[72] | 吕思, 卫志农. 基于动态无线充电的电力-交通网协同优化运行研究综述与展望[J]. 全球能源互联网, 2019, 2(5):484-491. |
[72] | LYU Si, WEI Zhinong. Coupling electricity and transportation networks to achieve dynamic wireless charging: Review and prospects[J]. Journal of Global Energy Interconnection, 2019, 2(5):484-491. |
[73] | ZHANG H C, MOURA S J, HU Z C, et al. PEV fast-charging station siting and sizing on coupled transportation and power networks[J]. IEEE Transactions on Smart Grid, 2018, 9(4):2595-2605. |
[74] | ZHANG H C, MOURA S J, HU Z C, et al. A second-order cone programming model for planning PEV fast-charging stations[J]. IEEE Transactions on Power Systems, 2018, 33(3):2763-2777. |
[75] | HE F, WU D, YIN Y F, et al. Optimal deployment of public charging stations for plug-in hybrid electric vehicles[J]. Transportation Research Part B: Methodological, 2013, 47:87-101. |
[76] | YAO W F, ZHAO J H, WEN F S, et al. A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems[J]. IEEE Transactions on Power Systems, 2014, 29(4):1811-1821. |
[77] | XIANG Y, LIU J Y, LI R, et al. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates[J]. Applied Energy, 2016, 178:647-659. |
[78] | WEI W, WU L, WANG J H, et al. Expansion planning of urban electrified transportation networks: A mixed-integer convex programming approach[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1):210-224. |
[79] | HE F, YIN Y F, ZHOU J. Integrated pricing of roads and electricity enabled by wireless power transfer[J]. Transportation Research Part C: Emerging Technologies, 2013, 34:1-15. |
[80] | WEI W, MEI S W, WU L, et al. Optimal traffic-power flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2017, 8(1):84-95. |
[81] | HE F, YIN Y F, WANG J H, et al. Sustainability SI: Optimal prices of electricity at public charging stations for plug-in electric vehicles[J]. Networks and Spatial Economics, 2016, 16(1):131-154. |
[82] | WEI W, WU L, WANG J H, et al. Network equilibrium of coupled transportation and power distribution systems[J]. IEEE Transactions on Smart Grid, 2018, 9(6):6764-6779. |
[83] | MANSHADI S D, KHODAYAR M E, ABDELGHANY K, et al. Wireless charging of electric vehicles in electricity and transportation networks[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4503-4512. |
[84] | WEI W, MEI S W, WU L, et al. Robust operation of distribution networks coupled with urban transportation infrastructures[J]. IEEE Transactions on Power Systems, 2017, 32(3):2118-2130. |
[85] | 张津珲, 王旭, 蒋传文, 等. 计及交通流量不确定性的多网耦合综合能源系统优化调度方法[J]. 电网技术, 2019, 43(9):3081-3093. |
[85] | ZHANG Jinhui, WANG Xu, JIANG Chuanwen, et al. Optimal scheduling method of multi-network regional integrated energy system based on traffic flow uncertainty[J]. Power System Technology, 2019, 43(9):3081-3093. |
[86] | QIAN T, SHAO C C, LI X L, et al. Enhanced coordinated operations of electric power and transportation networks via EV charging services[J]. IEEE Transactions on Smart Grid, 2020, 11(4):3019-3030. |
[87] | ZHOU Z, ZHANG X, GUO Q, et al. Analyzing power and dynamic traffic flows in coupled power and transportation networks[J]. Renewable and Sustainable Energy Reviews, 2021, 135:110083 |
[88] | LV S, WEI Z N, SUN G Q, et al. Optimal power and semi-dynamic traffic flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2020, 11(3):1854-1865. |
[89] | SHI X Y, MA Z J. An efficient game for vehicle-to-grid coordination problems in smart grids[J]. International Journal of Systems Science, 2015, 46(15):2686-2701. |
[90] | CHANG X Y, MA T, WU R. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives[J]. International Journal of Hydrogen Energy, 2019, 44(30):16015-16027. |
[91] | KUVVETLI Y. Multi-objective and multi-period hydrogen refueling station location problem[J]. International Journal of Hydrogen Energy, 2020, 45(55):30845-30858. |
[92] | 马志超, 冯浩, 闫云东. 加氢站供氢模式的选择及制氢技术的研究现状分析[J]. 广州化工, 2019, 47(16):132-134. |
[92] | MA Zhichao, FENG Hao, YAN Yundong. Selection of hydrogen supply mode for hydrogen station and analysis of research status for hydrogen production technology[J]. Guangzhou Chemical Industry, 2019, 47(16):132-134. |
[93] | KANG J E, BROWN T, RECKER W W, et al. Refueling hydrogen fuel cell vehicles with 68 proposed refueling stations in California: Measuring deviations from daily travel patterns[J]. International Journal of Hydrogen Energy, 2014, 39(7):3444-3449. |
[94] | KUBY M, LINES L, SCHULTZ R, et al. Optimization of hydrogen stations in Florida using the Flow-Refueling Location Model[J]. International Journal of Hydrogen Energy, 2009, 34(15):6045-6064. |
[95] | KIM J G, KUBY M. The deviation-flow refueling location model for optimizing a network of refueling stations[J]. International Journal of Hydrogen Energy, 2012, 37(6):5406-5420. |
[96] | HONMA Y, KUBY M. Node-based vs. path-based location models for urban hydrogen refueling stations: Comparing convenience and coverage abilities[J]. International Journal of Hydrogen Energy, 2019, 44(29):15246-15261. |
[97] | MIRALINAGHI M, LOU Y Y, KESKIN B B, et al. Refueling station location problem with traffic deviation considering route choice and demand uncertainty[J]. International Journal of Hydrogen Energy, 2017, 42(5):3335-3351. |
[98] | DAGDOUGUI H, OUAMMI A, SACILE R. Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems[J]. International Journal of Hydrogen Energy, 2012, 37(6):5360-5371. |
[99] | CARR S, ZHANG F, LIU F, et al. Optimal operation of a hydrogen refuelling station combined with wind power in the electricity market[J]. International Journal of Hydrogen Energy, 2016, 41(46):21057-21066. |
[100] | XU X, HU W H, CAO D, et al. Optimal operational strategy for an offgrid hybrid hydrogen/electricity refueling station powered by solar photovoltaics[J]. Journal of Power Sources, 2020, 451:227810. |
[101] | 常乐, 倪维斗, 李政, 等. 氢能供应链中最佳运氢方式的选择[J]. 清华大学学报(自然科学版), 2009, 49(2):257-260. |
[101] | CHANG Le, NI Weidou, LI Zheng, et al. Selection of best hydrogen transport mode in the hydrogen supply chain[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(2):257-260. |
[102] | NAZIR H, MUTHUSWAMY N, LOUIS C, et al. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution[J]. International Journal of Hydrogen Energy, 2020, 45(41):20693-20708. |
[103] | YANG C, OGDEN J. Determining the lowest-cost hydrogen delivery mode[J]. International Journal of Hydrogen Energy, 2007, 32(2):268-286. |
[104] | 马建新, 刘绍军, 周伟, 等. 加氢站氢气运输方案比选[J]. 同济大学学报(自然科学版), 2008, 36(5):615-619. |
[104] | MA Jianxin, LIU Shaojun, ZHOU Wei, et al. Comparison of hydrogen transportation methods for hydrogen refueling station[J]. Journal of Tongji University (Natural Science), 2008, 36(5):615-619. |
[105] | REDDI K, ELGOWAINY A, RUSTAGI N, et al. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling[J]. International Journal of Hydrogen Energy, 2018, 43(9):4428-4438. |
[106] | LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks[J]. International Journal of Hydrogen Energy, 2019, 44(35):19302-19312. |
[107] | GIM B, BOO K J, CHO S M. A transportation model approach for constructing the cost effective central hydrogen supply system in Korea[J]. International Journal of Hydrogen Energy, 2012, 37(2):1162-1172. |
/
〈 |
|
〉 |