光纤光栅传感器振动与温度信号解耦

展开
  • 上海交通大学 核科学与工程学院,上海 200240
李晗(1995-),男,山东省潍坊市人,硕士生,主要从事反应堆热工水力研究.

收稿日期: 2020-09-29

  网络出版日期: 2022-03-03

基金资助

国家自然科学基金资助项目(51306112)

Decoupling of Vibration and Temperature Signals of Fiber Bragg Grating Sensor

Expand
  • School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-09-29

  Online published: 2022-03-03

摘要

利用单个光纤光栅(FBG)传感器开展同时测量振动与温度信号的实验,提出基于MATLAB的解耦方法分离振动与温度信号.研究结果表明:单信号测量的条件下,FBG传感器对温度的静态测量误差在±0.4 ℃以内,对振动主频动态测量的相对误差为0.5%.FBG传感器测量得到振动与温度的复合信号,通过所提解耦方法得到的振动主频相对误差为0.65%,振动幅值相对误差为7.14%,温度信号误差在±3.3 ℃以内.

本文引用格式

李晗, 张波涛, 王俊杰, 孙运达, 龚圣捷 . 光纤光栅传感器振动与温度信号解耦[J]. 上海交通大学学报, 2022 , 56(2) : 214 -222 . DOI: 10.16183/j.cnki.jsjtu.2020.313

Abstract

This paper uses a single fiber bragg grating (FBG) sensor to implement an experiment to measure vibration and temperature signals at the same time, and proposes a MATLAB-based decoupling method to separate vibration and temperature signals. The experimental results show that under the condition of single signal measurement, the static temperature measurement error of the FBG sensor is within ±0.4 ℃ and the relative error of the dynamic measurement of the main frequency of vibration is 0.5%. The FBG sensor measures the composite signal of vibration and temperature. The relative error of the main vibration frequency obtained by the decoupling method proposed in this experiment is 0.65%, the relative error of the vibration amplitude is 7.14%, and the temperature signal error is within ±3.3 ℃.

参考文献

[1] 席志德, 陈炳德, 李朋洲, 等. 流致振动研究概述[EB/OL]. [2006-10-01](2020 -06-15). https://www.docin.com/p-1747813769.html.
[1] XI Zhide, CHEN Bingde, LI Pengzhou, et al. Overview of flow-induced vibration research[EB/OL]. [2006-10-01]. Overview of flow-induced vibration research[EB/OL]. [2006-10-01] (2020 -06-15). https://www.docin.com/p-1747813769.html.
[2] 汤敬. 分布式光纤光栅应变和温度同时测量的系统研究[D]. 秦皇岛: 燕山大学, 2004.
[2] TANG Jing. Study on the distributed FBG system for simultaneous measuring strain and temperature[D]. Qinhuangdao: Yanshan University, 2004.
[3] 郭婷, 惠小强. FBG传感对应变, 温度及湿度的同时测量[J]. 压电与声光, 2013, 35(1):43-46.
[3] GUO Ting, XI Xiaoqiang. The simultaneous measurement of strain, temperature and humidity by FBG sensors[J]. Piezoelectrics & Acoustooptics, 2013, 35(1):43-46.
[4] 贾宏志, 李育林, 忽满利, 等. 光纤Bragg光栅温度和应变的灵敏度分析及应用探讨[J]. 激光杂志, 1999, 20(5):12-14.
[4] JIA Hongzhi, LI Yulin, HU Manli, et al. Analysis of sensitivity of optical fiber Bragg gratings and research on its application[J]. Laser Journal, 1999, 20(5):12-14.
[5] SRIMANNARAYANA K, SHANKAR M S, SAI-PRASAD R L N, et al. Fiber Bragg grating and long period grating sensor for simultaneous measurement and discrimination of strain and temperature effects[J]. Optica Applicata, 2008, 38(3):601-608.
[6] FRAZÃO O, ROMERO R, REGO G, et al. Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement[J]. Electronics Letters, 2002, 38(14):693.
[7] 冯艳, 李玉龙, 徐敏, 等. 基于金属化光纤光栅的温度应变同时测量[J]. 传感技术学报, 2012, 25(11):1503-1506.
[7] FENG Yan, LI Yulong, XU Min, et al. Simultaneous measurement of the strain and temperature using the metallized optical fiber grating sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25(11):1503-1506.
[8] XU M G, REEKIE L, DAKIN J P, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J]. Electronics Letters, 1994, 30(13):1085-1087.
[9] 王振宝, 杨鹏翎, 邵碧波, 等. 应力和温度同时测量的光纤布拉格光栅双参数传感器[J]. 激光与光电子学进展, 2013, 50(10):60-64.
[9] WANG Zhenbao, YANG Pengling, SHAO Bibo, et al. Fiber Bragg grating for simultaneous measurement of strain and temperature[J]. Laser & Optoelectronics Progress, 2013, 50(10):60-64.
[10] 刘广伟. 光纤Bragg光栅温度压强检测系统研究[D]. 天津: 天津大学, 2010.
[10] LIU Guangwei. Temperature and pressure testing system research of fiber Bragg gratings[D]. Tianjin: Tianjin University, 2010.
[11] 赵宝新, 张保成. 信号的多项式趋势项研究和MATLAB实现[J]. 有色设备, 2009(2):16-19.
[11] ZHAO Baoxin, ZHANG Baocheng. Research on signal multinomial trend and implementation on MATLAB[J]. Non-Ferrous Metallurgical Equipment, 2009(2):16-19.
[12] 王广斌, 刘义伦, 金晓宏, 等. 基于最小二乘原理的趋势项处理及其MATLAB的实现[J]. 有色设备, 2005(5):4-8.
[12] WANG Guangbin, LIU Yilun, JIN Xiaohong, et al. Treatment of tendency part and its MATLAB accomplishment based on least-square principle[J]. Non-Ferrous Metallurgical Equipment, 2005(5):4-8.
[13] 王济, 胡晓. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 2006: 69-70.
[13] WANG Ji, HU Xiao. Application of MATLAB in vibration signal processing [M]. Beijing: China Water Power Press, 2006: 69-70.
[14] 杨安良, 龚圣捷, 顾汉洋. 流致振动激光多普勒测振方法研究[J]. 测试技术学报, 2015, 29(2):93-99.
[14] YANG Anliang, GONG Shengjie, GU Hanyang. An investigation of laser Doppler vibrometer measurement technique on flow-induced vibration[J]. Journal of Test and Measurement Technology, 2015, 29(2):93-99.
文章导航

/