考虑非线性刚度的正交切削系统稳定性

展开
  • 兰州交通大学 机电工程学院, 兰州 730070
石慧荣(1979-),男,山西省岢岚县人,副教授,主要从事机械振动控制研究.电话(Tel.):0931-4938023;E-mail: shrz98@aliyun.com.

收稿日期: 2020-12-07

  网络出版日期: 2022-03-03

基金资助

国家自然科学基金(11672121);兰州交通大学-天津大学联合创新基金(2020053)

Stability of Orthogonal Cutting System Considering Nonlinear Stiffness

Expand
  • School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 2020-12-07

  Online published: 2022-03-03

摘要

为了准确预测圆柱工件正交切削加工的稳定性,建立了考虑工件表面波动以及刀具和工件变形的非线性正交切削系统模型,利用多尺度法对系统进行了求解,分析了切削加工参数和系统参数对主共振和1/2次共振稳定性的影响,根据主共振和次共振的稳定性获得了切削系统的整体稳定性云图,并与线性近似系统的稳定性叶瓣图(lobe图)进行了比较.结果表明:在一定条件下,含有2次和3次非线性刚度的正交切削系统会出现主共振、1/2、1/3及1/4次共振不稳定现象,从而导致系统具有倍周期、准周期和混沌运行行为.通过比较也证明该非线性正交切削运动动力学模型能够准确预测系统的稳定性.

本文引用格式

石慧荣, 王海星, 李宗刚 . 考虑非线性刚度的正交切削系统稳定性[J]. 上海交通大学学报, 2022 , 56(2) : 191 -200 . DOI: 10.16183/j.cnki.jsjtu.2020.413

Abstract

In order to accurately predict the stability of orthogonal cutting of cylindrical workpiece, a nonlinear orthogonal cutting system model is established, which includes the nonlinear stiffness caused by the surface wave of work as well as the deformation of the tool and work. The multi-scale method is used to solve the system. The effect of machining parameters and system parameters on the stability of the primary resonance and 1/2 subresonance is analyzed to gain the overall stability cloud map compared with the lobe diagrams of linear approximation system. The results show that the instability of primary resonance, 1/2, 1/3, and 1/4 subresonance occur in the orthogonal cutting system with the quadratic nonlinearity and cubic nonlinearities stiffness, which makes the system have period-doubling, quasi-periodic, and chaotic operation behavior. The comparison indicates that the dynamics model of nonlinear orthogonal cutting can accurately predict the stability of the system.

参考文献

[1] MOLNÁR T G, INSPERGER T, JOHN HOGAN S, et al. Estimation of the bistable zone for machining operations for the case of a distributed cutting-force model[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(5):051008.
[2] MOLNÁR T G, INSPERGER T, STÉPÁN G. State-dependent distributed-delay model of orthogonal cutting[J]. Nonlinear Dynamics, 2016, 84(3):1147-1156.
[3] WANG A, JIN W Y, WANG G P, et al. Analysis on dynamics of a cutting tool with the thermal distortion in turning process[J]. Nonlinear Dynamics, 2016, 86(2):1183-1191.
[4] NANKALI A, LEE Y S, KALMÁR-NAGY T. Targeted energy transfers for suppressing regenerative machine tool vibrations[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(1):011010.
[5] CHANDA A, DWIVEDY S K. Nonlinear dynamic analysis of flexible workpiece and tool in turning ope-ration with delay and internal resonance[J]. Journal of Sound and Vibration, 2018, 434:358-378.
[6] TYLER C T, TROUTMAN J R, SCHMITZ T L. A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning[J]. Precision Engineering, 2016, 46:65-72.
[7] YAN Y, XU J, WIERCIGROCH M. Estimation and improvement of cutting safety[J]. Nonlinear Dyna-mics, 2019, 98(4):2975-2988.
[8] 任勇生, 马伯乐, 马静敏. 考虑刀杆结构非线性的铣削过程颤振稳定性与主共振[J]. 振动与冲击, 2019, 38(23):62-69.
[8] REN Yongsheng, MA Bole, MA Jingmin. Flutter stability and main resonance of a milling system considering structural nonlinearity of cutter bar[J]. Journal of Vibration and Shock, 2019, 38(23):62-69.
[9] 杨毅青, 张斌, 刘强. 铣削建模中多种切削力模型的分析比较[J]. 振动工程学报, 2015, 28(1):82-90.
[9] YANG Yiqing, ZHANG Bin, LIU Qiang. Analysis and comparison of various cutting force models in the milling process simulation[J]. Journal of Vibration Engineering, 2015, 28(1):82-90.
[10] AHMADI K. Analytical investigation of machining chatter by considering the nonlinearity of process damping[J]. Journal of Sound and Vibration, 2017, 393:252-264.
[11] GRAHAM E, MEHRPOUYA M, PARK S S. Robust prediction of chatter stability in milling based on the analytical chatter stability[J]. Journal of Manufacturing Processes, 2013, 15(4):508-517.
[12] ZAKOVOROTNY V L, LAPSHIN V P, BABENKO T S. Assessing the regenerative effect impact on the dynamics of deformation movements of the tool during turning[J]. Procedia Engineering, 2017, 206:68-73.
[13] ZAKOVOROTNY V L, LUKYANOV A D, GUBANOVA A A, et al. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting[J]. Journal of Sound and Vibration, 2016, 368:174-190.
[14] WARMI$\acute{N}$SKI J, LITAK G, CARTMELL M P, et al. Approximate analytical solutions for primary chatter in the non-linear metal cutting model[J]. Journal of Sound and Vibration, 2003, 259(4):917-933.
[15] YU K N, WANG C C, YAU H T, et al. Numerical computation and nonlinear dynamic analysis of ultrasonic cutting system[J]. Computers & Electrical Engineering, 2016, 51:270-283.
[16] DONG X F, QIU Z Z. Stability analysis in milling process based on updated numerical integration method[J]. Mechanical Systems and Signal Processing, 2020, 137:106435.
文章导航

/