电机与离合器复合控制的电动装载机换挡策略
收稿日期: 2020-12-02
网络出版日期: 2022-03-03
基金资助
国家重点研发计划(2020YFB2009904);国家自然科学基金(5187521);国家自然科学基金(51905180);福建省高校产学研重大项目(2019H6015);福建省自然科学基金(2018J01068);福建省自然科学基金(2019J01060)
Shift Strategy of Electric Drive Loader with Compound Control of Motor and Clutch
Received date: 2020-12-02
Online published: 2022-03-03
为了发挥纯电驱动方式的优势,针对电动装载机的传动系统,取消传统机型上效率较低的液力变矩器及倒挡方向离合器.通过分析纯电驱动系统换挡规律,采用电液换挡控制系统控制湿式离合器工作,并基于压力和转速等反馈结合驱动电机主动工作在转速及转矩模式,实现离合器充、泄油过程中转矩及转速的匹配.针对某50型纯电驱动装载机,提出一种基于驱动电机与离合器压力复合控制的纯电驱动装载机换挡控制策略.整车试验结果表明:所提出的控制策略能发挥纯电驱动的优势,换挡时间缩短约50%, 滑摩做功大幅减小,换挡冲击度最大值为14.08 m/s3,在我国车辆推荐限定值17.64 m/s3以内.
任好玲, 蔡少乐, 陈其怀, 林添良, 郎彬 . 电机与离合器复合控制的电动装载机换挡策略[J]. 上海交通大学学报, 2022 , 56(2) : 173 -181 . DOI: 10.16183/j.cnki.jsjtu.2020.409
To give full play to the advantages of pure electric drive, and aimed at the transmission system of electric loader, the low efficiency hydraulic torque converter and reverse direction clutch of traditional models are cancelled. By analyzing the shift law of the pure electric drive system, the electro-hydraulic shift control system is used to control the wet clutch, and based on the feedback of pressure and speed, combined with the driving motor active working in the speed and torque mode, the matching of torque and speed in the process of clutch engagement and disengagement is realized. For a 50-type pure electric drive loader, a shift control strategy of pure electric drive loader based on composite control of drive motor and clutch pressure is proposed. The result of vehicle test shows that the proposed control strategy can give full play to the advantages of pure electric drive. The shift time is reduced by about 50%, the sliding friction work is greatly reduced, and the maximum shift impact is 14.08 m/s3, which is within the recommended limit value of 17.64 m/s3 for Chinese vehicles.
Key words: loader; pure electric drive; compound control; control strategy; shift quality
[1] | 袁盈, 张国宁, 纪亮, 等. 环境污染物排放关键技术标准研制[J]. 中国科技成果, 2011(9):23-24. |
[1] | YUAN Ying, ZHANG Guoning, JI Liang, et al. Development of key technical standards for environmental pollutant discharge[J]. China Science and Technology Achievements, 2011(9):23-24. |
[2] | 本刊编辑部. 中国应对气候变化的政策与行动2019年度报告[J]. 污染防治技术, 2019, 32(6):1. |
[2] | Editorial Room. China’s climate change policy and action 2019 annual report released[J]. Pollution Control Tecnology, 2019, 32(6):1 |
[3] | 吕守军, 沈星迟, 张晓敏. 中国PM2.5治理困局及对策研究: 基于环境规制理论视角的分析[J]. 上海交通大学学报(哲学社会科学版), 2015, 23(6):50-59. |
[3] | LV Shoujun, SHEN Xingchi, ZHANG Xiaomin. Environmental regulations: An analysis based on environmental regulation theory[J]. Journal of Shanghai Jiao Tong University (Philosophy and Social Sciences), 2015, 23(6):50-59. |
[4] | 本刊编辑部. 中共中央国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见[J]. 当代农村财经, 2018(12):29-36. |
[4] | Editorial Room. Opinions of the Central Committee of the Communist Party of China and the State Council on comprehensively strengthening ecological environmental protection and firmly fighting the battle of pollution prevention and control[J]. Rural Finance and Financial Affair, 2018 (12):29-36. |
[5] | 本刊编辑部. 非道路移动机械污染防治技术政策[J]. 农机质量与监督, 2018(9):9-11. |
[5] | Editorial Room. Technical policy on pollution control of non-road mobile machinery[J]. Agricultural Machinery Quality and Supervision, 2018(9):9-11. |
[6] | 本刊编辑部. 中国移动源环境管理年报(2019)[J]. 中国能源, 2019, 41(10):1. |
[6] | Editorial Room. China mobile source environmental management annual report (2019)[J]. China Energy, 2019, 41(10):1. |
[7] | 林添良, 黄伟平, 任好玲, 等. 工程机械负载敏感型自动怠速系统[J]. 上海交通大学学报, 2016, 50(12):1929-1935. |
[7] | LIN Tianliang, HUANG Weiping, REN Haoling, et al. Automatic idle speed control of load sensing for electric-driven construction machinery[J]. Journal of Shanghai Jiao Tong University, 2016, 50(12):1929-1935. |
[8] | 李华龙. 装载机多种模式自动变速换挡规律研究[D]. 长春: 吉林大学, 2014. |
[8] | LI Hualong. Study on shift schedule with multi-modes of automatic transmission for loader[D]. Changchun: Jilin University, 2014. |
[9] | LIU F Y, CHEN L, FANG C L, et al. Stability analysis of a force-aided lever actuation system for dry clutches with negative stiffness element[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2):218-226. |
[10] | 宋金磊. 基于机液缓冲阀的装载机变速箱电液换挡系统的研究[D]. 杭州: 浙江大学, 2018. |
[10] | SONG Jinlei. Research on electro-hydraulic shifting system of loader transmission based on mechanical and hydraulic buffer valve[D]. Hangzhou: Zhejiang University, 2018. |
[11] | COCETTI M, DONNARUMMA S, DE PASCALI L, et al. Hybrid nonovershooting set-point pressure regulation for a wet clutch[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1276-1287. |
[12] | JUNG S, KIM J, LEE H, et al. Hydraulic clutch fill control using control-oriented model in wet dual clutch transmission [C]//2019 American Control Conference (ACC). Philadephia, USA: IEEE, 2019: 5538-5543. |
[13] | 胡宏伟. 湿式自动离合器接合过程特性的研究[D]. 杭州: 浙江大学, 2008. |
[13] | HU Hongwei. Study on the characteristics of automatic wet clutch engagement process[D]. Hangzhou: Zhejiang University, 2008. |
[14] | IVANOVI$\acute{C}$ V, HEROLD Z, DEUR J, et al. Experimental characterization of wet clutch friction behaviors including thermal dynamics[J]. SAE International Journal of Engines, 2009, 2(1):1211-1220. |
[15] | 吉毅. 纯电动汽车用AMT参数设计及换挡控制策略优化[D]. 重庆: 重庆大学, 2014. |
[15] | JI Yi. Parameter design and shifting control strategy optimization of AMT for pure electric vehicle[D]. Chongqing: Chongqing University, 2014. |
[16] | 张志刚. 关于湿式离合器几个工作特性研究[D]. 杭州: 浙江大学, 2010. |
[16] | ZHANG Zhigang. Study on several working characteristics of wet clutch[D]. Hangzhou: Zhejiang University, 2010. |
[17] | 宋强, 孙丹婷, 章伟. 纯电动车AMT换挡非线性建模及控制[J/OL].(2020 -08-05) [2020-12-02]. https://doi.org/10.13229/j.cnki.jdxbgxb20200070. |
[17] | SONG Qiang, SUN Danting, ZHANG Wei. Shift nonlinear modeling and control of automated mechanical transmission in pure electric vehicle[J/OL].(2020-08-05) [2020-12-02]. https://doi.org/10.13229/j.cnki.jdxbgxb20200070. |
[18] | 刘宗其. 重型叉车自动换挡关键技术研究[D]. 合肥: 合肥工业大学, 2013. |
[18] | LIU Zongqi. Research on the key technology of heavy forklift truck automatic shift[D]. Hefei: Hefei University of Technology, 2013. |
[19] | 邹宏, 段剑锐, 姚进. 工程车辆传动系统换挡冲击度分析与仿真[J]. 机械传动, 2017, 41(7):142-148. |
[19] | ZOU Hong, DUAN Jianrui, YAO Jin. Analysis and simulation of shifting-impact of transmission system of engineering vehicle[J]. Journal of Mechanical Transmission, 2017, 41(7):142-148. |
/
〈 |
|
〉 |