一种面向固态激光雷达的简易标定与验证方法

展开
  • 上海交通大学 自动化系;系统控制与信息处理教育部重点实验室;上海工业智能管控工程技术研究中心,上海 200240
杨逸文(1995-),男,上海市人,硕士生,研究方向为激光雷达标定与激光建图定位.

收稿日期: 2021-09-14

  网络出版日期: 2022-01-24

基金资助

国家自然科学基金(U1764264)

A Simple Calibration and Verification Method for Solid-State Lidar

Expand
  • Department of Automation; Key Laboratory of System Control and Information Processing of the Ministry of Education; Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-09-14

  Online published: 2022-01-24

摘要

为了解决固态激光雷达外参标定繁琐与验证其标定结果较为困难的问题,提出了一种面向固态激光雷达的简易标定与验证方法.该方法设计了一种简易的标定场和标志物,随后利用标志物完成激光雷达的角度标定,再通过测绘方法完成激光雷达的距离标定,以此来减少角度外参与距离外参的相关性,并保证标定结果的精度.最后通过比较计算得出外参误差,验证激光雷达标定结果.实验结果表明该方法合理有效,且大幅减少了激光雷达标定和验证结果所需要的设备准备时间和成本,具有一定的应用价值.

本文引用格式

杨逸文, 贺越生, 王春香, 杨明 . 一种面向固态激光雷达的简易标定与验证方法[J]. 上海交通大学学报, 2021 , 55(S2) : 98 -102 . DOI: 10.16183/j.cnki.jsjtu.2021.S2.016

Abstract

In order to solve the problem of cumbersome external parameter calibration of solid-state lidar and overcome the difficulty in verifying its calibration results, a simple calibration and verification method for solid-state lidar is proposed. This method designs a simple calibration field and markers, uses the markers to complete the angle calibration of the lidar, and completes the distance calibration of the lidar by using the surveying method, so as to reduce the correlation of the external parameters of the angle and the distance, and to ensure the accuracy of the calibration result. Finally, the error of external parameter is obtained through comparison and calculation, and the calibration result of the lidar is verified. The experimental results show that the method proposed is reasonable and effective, and greatly reduces the equipment preparation time and cost required for lidar calibration and verification results, which has a certain application value.

参考文献

[1] ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time[C]// Proceedings of Robotics: Science and Systems. Berkeley, USA: IEEE, 2014: 1-9.
[2] JIAO J, YU Y, LIAO Q, et al. Automatic calibration of multiple 3D LiDARs in urban environments[C]// 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China: IEEE, 2019: 15-20.
[3] UNDERWOOD J, HILL A, SCHEDING S. Calibration of range sensor pose on mobile platforms[C]// 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 3866-3871.
[4] GAO C, SPLETZER J R. On-line calibration of multiple LIDARs on a mobile vehicle platform[C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA: IEEE, 2010: 279-284.
[5] 吴奋陟, 郭绍刚, 朱飞虎, 等. 基于标定场的激光雷达两步标定方法[J]. 空间控制技术与应用, 2017, 43(4): 57-62.
[5] WU Fenzhi, GUO Shaogang, ZHU Feihu, et al. Two-step calibration method of lidar sensor based on calibration field[J]. Aerospace Control and Application, 2017, 43(4): 57-62.
[6] LEVINSON J, THRUN S. Unsupervised calibration for multi-beam lasers[M]// Experimental robotics. Berlin, Heidelberg, Germany: Springer, 2014: 179-193.
[7] NOUIRA H, DESCHAUD J E, GOULETTE F. Target-free extrinsic calibration of a mobile multi-beam LIDAR system[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, II-3/W5:97-104.
[8] FERNÁNDEZ-MORAL E, ARÉVALO V, GONZÁLEZ-JIMÉNEZ J. Extrinsic calibration of a set of 2D laser rangefinders[C]// 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 2098-2104.
[9] 孙凯. 面向无人驾驶的多激光雷达耦合系统设计与实现[D]. 长春: 吉林大学, 2019.
[9] SUN Kai. Design and implementation of multi-lidar coupling system for autonomous driving[D]. Changchun: Jilin University, 2019.
[10] JIAO J, LIAO Q, ZHU Y, et al. A novel dual-lidar calibration algorithm using planar surfaces[C]// 2019 IEEE Intelligent Vehicles Symposium. Paris, France: IEEE, 2019: 1499-1504.
[11] 韩栋斌, 徐友春, 李华, 等. 基于手眼模型的三维激光雷达外参数标定[J]. 光电工程, 2017, 44(8): 798-804.
[11] HAN Dongbin, XU Youchun, LI Hua, et al. Calibration of extrinsic parameters for three-dimensional lidar based on hand-eye model[J]. Opto-Electronic Engineering, 2017, 44(8): 798-804.
[12] TSAI R Y, LENZ R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.
[13] TAYLOR Z, NIETO J. Motion-based calibration of multimodal sensor arrays[C]// 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 4843-4850.
[14] LIN J, LIU X, ZHANG F. A decentralized framework for simultaneous calibration, localization and mapping with multiple LiDARs[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2021: 4870-4877.
[15] LIU Z, ZHANG F, HONG X. Low-cost retina-like robotic lidars based on incommensurable scanning[J]. IEEE/ASME Transactions on Mechatronics, 2021.https://doi.org/10.1109/TMECH.2021.3058173.
文章导航

/