面向电网调控微场景智能搜索的调控本体标签体系构建

展开
  • 1.国家电网有限公司华东分部,上海 200120
    2.南瑞集团有限公司(国网电力科学研究院有限公司),南京 211106
    3.北京科东电力控制系统有限责任公司, 北京 100192
屈 刚(1977-),男,新疆维吾尔自治区库尔勒市人,高级工程师,博士,从事电力系统调度自动化运行管理及研究.

收稿日期: 2021-09-01

  网络出版日期: 2022-01-24

基金资助

国家电网有限公司华东分部科技项目(SGHD0000DKJS2100225)

Construction of a Regulation Ontology Label System for Intelligent Search of Power Grid Regulation Micro Scene

Expand
  • 1. State Grid Corporation of East China, Shanghai 200120, China
    2. Nari Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China
    3. Beijing Kedong Power Control System Co., Ltd., Beijing 100192, China

Received date: 2021-09-01

  Online published: 2022-01-24

摘要

随着智能电网科技的快速发展以及信息化的大数据时代到来,数据标签成为了衡量行业信息化水平的新兴评判标准,其对电网调度行业信息化、自动化、智能化系统的构建方向也产生了巨大的影响,并围绕数据和业务进行新一代的数字化改革,同时提出了适用于电网调控微场景搜索应用的调控本体标签体系构建方法,以电网调控微场景入手,切分并自动化重组电网的业务场景.通过创建相应的调控本体标签及相应的标签维度,提出了适合调控本体的标签库构建方式,并以标签库为核心提出了以共享、安全、服务、统计为能力核心的调控本体标签体系构建流程.以调控本体标签体系在电网微场景智能搜索中的应用验证了构建方法的合理性和正确性.

本文引用格式

屈刚, 肖林朋, 张亮 . 面向电网调控微场景智能搜索的调控本体标签体系构建[J]. 上海交通大学学报, 2021 , 55(S2) : 92 -97 . DOI: 10.16183/j.cnki.jsjtu.2021.S2.015

Abstract

With the rapid development of the smart grid technology and the advent of the big data era of informatization, data labels have become a new evaluation standard to measure the informatization level of the industry, which also have a great impact on the construction direction of industry informatization, automation, and intelligent system in the later stage. With the promotion of new technology, the power grid dispatching industry is also carrying out a new generation of digital reform around data and business. This paper proposes a construction method of regulation ontology label system suitable for the search application of power grid regulation micro scene, which starts with the power grid regulation micro scene, divides and automatically reorganizes the business scene of the power grid. On this basis, by creating corresponding regulatory ontology labels and corresponding label dimensions, it innovatively proposes the construction method of label library suitable for regulatory ontology, and puts forward the construction process of regulatory ontology label system with sharing, security, service, and statistics as the core. Finally, the rationality and correctness of the construction method are verified by the application of regulation ontology label system in power grid micro scene intelligent search.

参考文献

[1] 周玲, 钟璐, 黄渊军, 等. 用户画像和标签在电力服务系统中的应用研究[J]. 自动化仪表, 2021, 42(5): 10-13.
[1] ZHOU Ling, ZHONG Lu, HUANG Yuanjun, et al. Research on the application of user portrait and label in power service system[J]. Automation Instrument, 2021, 42(5): 10-13.
[2] 徐婷婷. 关于智能化检索功能的设计应用和技术探索[J]. 数字技术与应用, 2021, 39(7): 44-46.
[2] XU Tingting. Design, application and technical exploration of intelligent retrieval function[J]. Digital Technology and Application, 2021, 39(7): 44-46.
[3] 田少骅, 胡琦瑶, 蒙泽新, 等. 基于提取标签显著性区域的深度学习图像检索方法[J]. 物联网技术, 2020, 10(9): 54-57.
[3] TIAN Shaohua, HU Qiyao, MENG Zexin, et al. Deep learning image retrieval method based on extracting tag saliency region[J]. Internet of Things Technology, 2020, 10(9): 54-57.
[4] 陈世聪, 袁得嵛, 黄淑华, 等. 基于结构深度网络嵌入模型的节点标签分类算法[J/OL]. (2021-08-20) [2021-08-28].http://kns.cnki.net/kcms/detail/50.1075.TP.20210819.1726.040.html.
[4] CHEN Shicong, YUAN Deyu, HUANG Shuhua, et al. Node label classification algorithm based on structural depth network embedding model[J/OL]. (2021-08-20) [2021-08-28].http://kns.cnki.net/kcms/detail/50.1075.TP.20210819.1726.040.html.
[5] 李鹏, 阮晓钢, 朱晓庆, 等. 基于深度强化学习的区域化视觉导航方法[J]. 上海交通大学学报, 2021, 55(5): 575-585.
[5] LI Peng, RUAN Xiaogang, ZHU Xiaoqing, et al. Regional visual navigation method based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 575-585.
[6] 吴倩红, 韩蓓, 冯琳, 等. “人工智能+”时代下的智能电网预测分析[J]. 上海交通大学学报, 2018, 52(10): 1206-1219.
[6] WU Qianhong, HAN Bei, FENG Lin, et al. Prediction and analysis of smart grid in the era of “artificial intelligence +”[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1206-1219.
[7] 陆泉, 何超, 陈静, 等. 基于两阶段迁移学习的多标签分类模型研究[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
[7] LU Quan, HE Chao, CHEN Jing, et al. Research on multi label classification model based on two-stage transfer learning[J]. Data Analysis and Knowledge Discovery, 2021, 5(7): 91-100.
文章导航

/