基于语义特征抓取电网调度事件的检测技术

展开
  • 1.国家电网有限公司华东分部,上海 200120
    2.南瑞集团有限公司(国网电力科学研究院有限公司),南京 211106
    3.北京科东电力控制系统有限责任公司,北京100192
许 凌(1981-),男,山东省平度市人,高级工程师,从事大电网调度运行及自动控制研究.

收稿日期: 2021-09-01

  网络出版日期: 2022-01-24

基金资助

国家电网有限公司华东分部科技项目(SGHD0000DKJS2100225)

Power Grid Dispatching Event Detection Technology Based on Semantic Feature Capture

Expand
  • 1. East Branch of State Grid Corporation of China, Shangha 200120, China
    2. Nari Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China
    3. Beijing Kedong Power Control System Co., Ltd., Beijing 100192, China

Received date: 2021-09-01

  Online published: 2022-01-24

摘要

电网运行管理文档中的领域用语专业且复杂,在信息化提取的过程中需要优秀且适用的事件检测方法抽取事件主体.而当前的中文事件检测方法大多采用词嵌入技术以捕获语义表示,但这些方法难以捕捉触发词与同一句子中的其他领域词汇间的依赖关系.基于上述现状,提出了一种混合表示的新架构,以表征两个字符和单词的语义和结构信息.该模型可以通过依赖性解析器生成的语义表示来捕获富语义特征.实验基于调度日志、调度检修票、调度预案语料使用不同模型进行评估,结果表明,该方法可以显著提高电网调度文本事件检测的性能.

本文引用格式

许凌, 王兴志, 肖林朋 . 基于语义特征抓取电网调度事件的检测技术[J]. 上海交通大学学报, 2021 , 55(S2) : 86 -91 . DOI: 10.16183/j.cnki.jsjtu.2021.S2.014

Abstract

The domain terms in power grid operation management documents are professional and complex. In the process of information extraction, excellent and applicable event detection methods are needed to extract event subjects. However, most of the current Chinese event detection methods use the word embedding technology to capture semantic representation, but it is difficult for these methods to capture the dependency between trigger words and other domain words in the same sentence. Based on the above situation, this paper proposes a novel hybrid representation architecture to represent the semantic and structural information of two characters and words. The model can capture rich semantic features through the semantic representation generated by the dependency parser. The experiment is based on the corpus of dispatching log, dispatching maintenance ticket, and dispatching plan. The results show that this method can significantly improve the performance of power grid dispatching text event detection.

参考文献

[1] ZHANG T T, JI H, SIL A. Joint entity and event extraction with generative adversarial imitation learning[J]. Data Intelligence, 2019, 1(2): 99-120.
[2] LIU S L, CHEN Y B, LIU K, et al. Exploiting argument information to improve event detection via supervised attention mechanisms[C]// 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1789-1798.
[3] YANG Y M, PIERCE T, CARBONELL J. A study of retrospective and on-line event detection[C]// 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Melbourne: ACM, 1998: 28-36.
[4] YANG Y M, ZHANG J, CARBONELL J, et al. Topic-conditioned novelty detection[C]// Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton: ACM, 2002: 688-693.
[5] SALTON G. Automatic text processing: The transformation analysis and retrieval of information by computer[M]. Reading: Addison-Wesley, 1989.
[6] KUMARAN G, ALLAN J. Text classification and named entities for new event detection[C]// 27th Annual International Conference on Research and Development in Information Retrieval. Sheffield: ACM, 2004: 297-304.
[7] SANKARANARAYANAN J, SAMET H, TEITLER B E, et al. TwitterStand: News in tweets[C]// 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle: ACM, 2009: 42-51.
[8] PHUVIPADAWAT S, MURATA T. Breaking news detection and tracking in twitter[C]// 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Toronto: IEEE, 2010: 120-123.
文章导航

/