基于区块链技术的电动汽车绿证交易研究

展开
  • 1.国家电网有限公司华东分部,上海 200120
    2.南京恒智信息技术有限责任公司,南京 210000
胡春阳(1974-),男,上海市人,高级工程师,从事电力系统自动化及通信技术研究.电话(Tel.):021-38732990;E-mail: hu_cy@ec.sgcc.com.cn.

收稿日期: 2021-10-26

  网络出版日期: 2022-01-24

Green Certificate Transaction of Electric Vehicle Based on Blockchain Technology

Expand
  • 1. East Branch of State Grid Corporation of China, Shanghai 200120, China
    2. Nanjing Hengzhi Information Technology Co., Ltd., Nanjing 210000, China

Received date: 2021-10-26

  Online published: 2022-01-24

摘要

绿证作为新能源电力清洁属性的经济价值衡量货币,可以为政府减轻可再生能源电力补贴负担.电动汽车作为大规模可调度负荷,具有承担购买绿证的义务.绿证交易双方利用区块链平台去中心化的优势直接进行交易,以新能源发电商收入最多、电动汽车聚合商成本最低为目标,考虑绿证在市场中的供需情况对绿证价格和新能源电价的影响,完善绿证交易及电动汽车充电调度策略.对比电动汽车是否参与绿证交易时新能源发电商的发电情况和效益.算例结果证明电动汽车参与绿证交易能够有效提升新能源机组出力消纳和新能源发电商效益.

本文引用格式

胡春阳, 吴鑫, 周峰 . 基于区块链技术的电动汽车绿证交易研究[J]. 上海交通大学学报, 2021 , 55(S2) : 64 -71 . DOI: 10.16183/j.cnki.jsjtu.2021.S2.010

Abstract

Green certificate, as a new energy power clean attribute of the economic value of measurement currency, can reduce the burden of renewable energy power subsidies for the government. As a large-scale schedulable load, electric vehicles (EVs) have the obligation to purchase green certificates. The two sides of green certificate transaction take advantage of the decentralization of blockchain platform to conduct transactions directly. Aimed at the highest revenue of new energy power producer and the lowest cost of EV aggregator, and considering the influence of supply-demand of green certificate on green certificate price and new energy price, the green certificate transaction and the charging scheduling strategy of EV were solved. The power generation and benefits of new energy power producers with and without green certificate transaction of EVs were compared. The results show that the participation of EVs in green certificate transaction can effectively increase the capacity of new energy generating units and improve the efficiency of new energy generators.

参考文献

[1] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494.
[1] YUAN Yong, WANG Feiyue. Blockchain: The state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494.
[2] 陈泽西, 孙玉树, 张妍, 等. 考虑风光互补的储能优化配置研究[J]. 电工技术学报, 2021, 36(Sup.1): 145-153.
[2] CHEN Zexi, SUN Yushu, ZHANG Yan, et al. Research on energy storage optimal allocation considering complementarity of wind power and PV[J]. Transactions of China Electrotechnical Society, 2021, 36(Sup.1): 145-153.
[3] 陈妍希, 赵奇, 龚育成, 等. 基于区块链技术的电动汽车充电交易探讨[J]. 电力工程技术, 2020, 39(6): 2-7.
[3] CHEN Yanxi, ZHAO Qi, GONG Yucheng, et al. EV charging transaction based on blockchain technology[J]. Electric Power Engineering Technology, 2020, 39(6): 2-7.
[4] 辛凯华. 基于智能合约的电动汽车充电选择决策方法[D]. 湘潭: 湘潭大学, 2020.
[4] XIN Kaihua. Optimal dispatching of electric vehicles based on smart contract[D]. Xiangtan, China: Xiangtan University, 2020.
[5] 朱书坤. 基于区块链和卷积神经网络的电动汽车能源交易方案设计与实现[D]. 武汉: 华中师范大学, 2020.
[5] ZHU Shukun. Design and implementation of electric vehicle energy trading scheme based on blockchain and convolutional neural network[D]. Wuhan: Central China Normal University, 2020.
[6] 王惠洲, 于艾清. 基于联盟区块链交易平台的电动汽车有序充电相对鲁棒优化[J]. 中国电力, 2019, 52(8): 126-134.
[6] WANG Huizhou, YU Aiqing. Relative robust optimization of electric vehicle’s sequential charging based on the alliance block chain trading platform[J]. China Power, 2019, 52(8): 126-134.
[7] 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11.
[7] FENG Changsen, XIE Fangrui, WEN Fushuan, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.
[8] 李雅超, 撖晨宇, 肖艳炜, 等. 基于可再生能源经济调度时序模拟的绿证市场交易研究[J]. 智慧电力, 2021, 49(4): 58-65.
[8] LI Yachao, HAN Chenyu, XIAO Yanwei, et al. Tradable green certificate market transaction based on economic scheduling timing simulation of renewable energy[J]. Smart Power, 2021, 49(4): 58-65.
[9] 骆钊, 卢涛, 马瑞, 等. 可再生能源配额制下多园区综合能源系统优化调度[J]. 电力自动化设备, 2021, 41(4): 8-14.
[9] LUO Zhao, LU Tao, MA Rui, et al. Optimal scheduling of multi-park integrated energy system under renewable portfolio standard[J]. Electric Power Automation Equipment, 2021, 41(4): 8-14.
[10] 刘敦楠, 刘明光, 王文, 等. 充电负荷聚合商参与绿证交易的运营模式与关键技术[J]. 电力系统自动化, 2020, 44(10): 1-9.
[10] LIU Dunnan, LIU Mingguang, WANG Wen, et al. Operation mode and key technology of charging load aggregator participating in green certificate trading[J]. Automation of Electric Power Systems, 2020, 44(10): 1-9.
[11] 马伟, 郭连奎, 贺楠, 等. 基于区块链的大用户直购交易模式研究[J]. 电测与仪表, 2021. https://knscnki.net/kcms/detail/23.1202.TH.20210517.0929.002.html.
[11] MA Wei, GUO Liankui, HE Nan,, et al. Blockchain-based direct purchase transaction mode for large users[J]. Electrical Measurement & Instrumentation, 2021. https://knscnki.net/kcms/detail/23.1202.TH.20210517.0929.002.html.
[12] 逯遥, 毛知新, 邱志斌. 区块链技术在能源物联网领域的发展与应用综述[J]. 广东电力, 2021, 34(7): 1-12.
[12] LU Yao, MAO Zhixin, QIU Zhibin. Review of development and applications of blockchain technology in the field of energy Internet of Things[J]. Guangdong Electric Power, 2021, 34(7): 1-12.
[13] 穆程刚, 丁涛, 曲明, 等. 基于区块链的表后微网系统及其点对点能量块交易模型设计[J]. 中国电机工程学报, 2021, 41(20): 6927-6941.
[13] MU Chenggang, DING Tao, QU Ming, et al. Block-chain-based post-table microgrid system and its point-to-point energy block trading model design[J]. Proceedings of the Electrical Engineering, 2021, 41(20): 6927-6941.
[14] 陈朗, 徐栖桐, 于春燕, 等. 区块链技术与去中心化电商平台的融合发展路径[J]. 中国市场, 2021(13): 189-191.
[14] CHEN Lang, XU Xitong, YU Chunyan, et al. The integrated development path of blockchain technology and decentralized e-commerce platform[J]. China Market, 2021(13): 189-191.
[15] 刘培德. 基于绿色电力证书的负荷优化调度[D]. 北京: 华北电力大学, 2019.
[15] LIU Peide. Optimal load dispatching based on tradable green certificate[D]. Beijing: North China Electric Power University, 2019.
[16] 张璐路. 基于可再生能源配额制的风火联合竞价策略研究[D]. 北京: 华北电力大学, 2019.
[16] ZHANG Lulu. Research on wind & thermal power joint bidding strategy based on renewable portfolio standard[D]. Beijing: North China Electric Power University, 2019.
[17] 戴尚文, 张利, 刘宁宁, 等. 考虑可再生能源消纳责任的售电公司购电决策分析[J]. 中国电力, 2021, 54(9): 156-164.
[17] DAI Shangwen, ZHANG Li, LIU Ningning, et al. Energy purchasing strategy of electricity retailer considering the responsibility of renewable energy consumption[J]. Electric Power, 2021, 54(9): 156-164.
[18] 何倩. 可再生能源配额制下售电公司购电优化决策[D]. 北京: 华北电力大学, 2020.
[18] HE Qian. Power purchase optimization decision of electricity sales companies under renewable portfolio standard[D]. Beijing: North China Electric Power University, 2020.
[19] 黄龙. 考虑可再生能源配额制的电力市场研究[D]. 广州: 华南理工大学, 2020.
[19] HUANG Long. Research on electricity market considering renewable portfolio standards[D]. Guangzhou: South China University of Technology, 2020.
[20] 魏震波, 隋东旭, 王瀚琳, 等. 含双边储备市场及绿证交易的现货市场分析[J]. 电力系统保护与控制, 2020, 48(8): 52-60.
[20] WEI Zhenbo, SUI Dongxu, WANG Hanlin, et al. Spot market analysis including bilateral reserve market and green certificate trading[J]. Power System Protection and Control, 2020, 48(8): 52-60.
[21] 蒋轶澄. 平衡机制和配额制下发售电主体的策略研究[D]. 杭州: 浙江大学, 2020.
[21] JIANG Yicheng. Research on power generator and retailer’s strategies under balancing mechanism and renewable portfolio standard[D]. Hangzhou: Zhejiang University, 2020.
[22] 高逸. 考虑可再生能源配额制的售电商购售电策略研究[D]. 武汉: 华中科技大学, 2019.
[22] GAO Yi. Power procurement and sale strategies for electricity retailers under renewable portfolio standards[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[23] 曲尧. 售电侧放开条件下电动汽车优化充电策略研究[D]. 北京: 华北电力大学, 2019.
[23] QU Yao. A research on optimized charging strategy of electric vehicles under the condition of electricity market[D]. Beijing: North China Electric Power University, 2019.
[24] 羌嘉曦, 敖国强, 何建辉, 等. 电动汽车动力电池特性仿真系统[J]. 上海交通大学学报, 2009, 43(8): 1196-1200.
[24] QIANG Jiaxi, AO Guoqiang, HE Jianhui, et al. Research on the battery simulation system of electric vehicles[J]. Journal of Shanghai Jiao Tong University, 2009, 43(8): 1196-1200.
[25] 梁吉, 左艺, 张玉琢, 等. 基于可再生能源配额制的风电并网节能经济调度[J]. 电网技术, 2019, 43(7): 2528-2534.
[25] LIANG Ji, ZUO Yi, ZHANG Yuzhuo, et al. Energy-saving and economic dispatch of power system containing wind power integration under renewable portfolio standard[J]. Power System Technology, 2019, 43(7): 2528-2534.
[26] 张丽丽. 促进新能源消纳的大用户直购电集中交易模式及算法[D]. 北京: 华北电力大学, 2018.
[26] ZHANG Lili. The centralized trading strategy and algorithm of large consumers direct-purchasing for the promotion of renewable energy consumption proportion[D]. Beijing: North China Electric Power University, 2018.
[27] 冯奕, 刘秋华, 刘颖, 等. 中国售电侧可再生能源配额制设计探索[J]. 电力系统自动化, 2017, 41(24): 137-141.
[27] FENG Yi, LIU Qiuhua, LIU Ying, et al. Design and exploration of renewable portfolio standard in power demand side in China[J]. Automation of Electric Power Systems, 2017, 41(24): 137-141.
[28] 徐基光. 基于绿证交易的含风电系统低碳经济调度[J]. 中国电力, 2016, 49(7): 145-150.
[28] XU Jiguang. Low-carbon economic dispatching for power grid integrated with wind power system based on the green certificate trading mechanism[J]. Electric Power, 2016, 49(7): 145-150.
[29] 陈玉珊, 秦琳琳, 吴刚, 等. 基于渐消记忆递推最小二乘法的电动汽车电池荷电状态在线估计[J]. 上海交通大学学报, 2020, 54(12): 1340-1346.
[29] CHEN Yushan, QIN Linlin, WU Gang, et al. Online state of charge estimation for battery in electric vehicles based on forgetting factor recursive least squares[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1340-1346.
文章导航

/