CAP1400压力容器外壁面临界热通量试验

展开
  • 1.上海核工程研究设计院有限公司,上海 200233
    2.上海交通大学 机械与动力工程学院,上海 200240
史国宝(1965-),男,浙江省宁波市人,研究员级高级工程师,主要从事核电厂总体设计和安全分析.

收稿日期: 2020-11-26

  网络出版日期: 2022-01-21

基金资助

国家科技重大专项资助项目(2018ZX06002004)

Test of Critical Heat Flux on Outer Surface of CAP1400 Pressurized Reactor Vessel

Expand
  • 1. Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-11-26

  Online published: 2022-01-21

摘要

根据模化原则建立了全高度切片型试验台架,采用爆炸焊技术研制了加热段,表面碳钢薄层可以真实模拟压力容器表面特性,开展了流道、压力、过冷度、流体水化学、表面状态等关键因素对压力容器外壁面临界热通量影响试验研究,获得了CAP1400压力容器外壁面传热极限规律,验证了熔融物堆内滞留措施中压力容器外流动和传热过程.

本文引用格式

史国宝, 郑明光, 张琨, 匡波, 刘鹏飞 . CAP1400压力容器外壁面临界热通量试验[J]. 上海交通大学学报, 2022 , 56(1) : 14 -20 . DOI: 10.16183/j.cnki.jsjtu.2020.395

Abstract

A full height sliced test facility is established based on the modeling process. The heating test section is manufactured by adopting the explosive welding technology, and the surface of carbon steel can simulate the actual surface characteristic of a pressurized reactor. Critical heat flux tests on flow, pressure, subcooling degree, chemical material in water, and surface characteristics are performed on the outer surface of the pressurized reactor vessel. Therefore, the law of heat transfer limit on the outer surface of the CAP1400 pressurized reactor vessel is obtained, and the process of flow and heat transfer for in-vessel retention is validated.

参考文献

[1] 郑明光. 从AP1000到CAP1400, 我国先进三代非能动核电技术自主化历程[J]. 中国核电, 2018, 11(1):41-45.
[1] ZHENG Mingguang. From AP1000 to CAP1400, self-reliant process of China’s third generation nuclear power[J]. China Nuclear Power, 2018, 11(1):41-45.
[2] SHI G B, GU P W, LU W, et al. CAP1400 IVR related design features and assessment[J]. Nuclear Engineering and Design, 2019, 346:35-45.
[3] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel coolability and retention of a core melt: TRN: 97: 012637 [R]. Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information, 1996.
[4] THEOFANOUS T G, TU J P, SALMASSI T,, et al. Quantification of limits to coolability in ULPU-2000 configuration IV [R/OL]. (2002-06-06)[2020-06-15]. https://www.nrc.gov/docs/ML0216/ML021620559.pdf.
[5] DINH T N, TU J P, SALMASSI T, et al. Limits of the coolability in the AP1000-related ULPU-2400 configuration V facility[J]. International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH), 2003: 1-14.
[6] LEE J, CHANG S H. An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure[J]. Nuclear Engineering and Design, 2012, 250:720-724.
[7] DEWITT G, MCKRELL T, BUONGIORNO J, et al. Experimental study of critical heat flux with alumina-water nanofluids in downward-facing channels for in-vessel retention applications[J]. Nuclear Engineering and Technology, 2013, 45(3):335-346.
[8] TROJER M, AZIZIAN R, PARAS J, et al. A margin missed: The effect of surface oxidation on CHF enhancement in IVR accident scenarios[J]. Nuclear Engineering and Design, 2018, 335:140-150.
[9] KAM D H, CHOI Y J, JEONG Y H. CHF experiment with downward-facing carbon and stainless steel plates under pressurized conditions[J]. International Journal of Heat and Mass Transfer, 2018, 125:670-680.
[10] SAKASHITA H, ONO A, NYUI J. Critical heat flux and near-wall boiling behaviors in saturated and subcooled pool boiling on vertical and inclined surfaces[J]. Journal of Nuclear Science and Technology, 2009, 46(11):1038-1048.
文章导航

/